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Preface

In 1958 Croes published a twenty page article in Operations Research describing
a new method to handle traveling salesman problems based on the iterative use of
simple edge-exchange mechanisms. This article can be seen as the seminal paper on
local search, reporting for the first time the success of simple neighborhood-based
iteration methods when applied to combinatorial optimization problems.

Half a century of practice reveals that local search has become quite extensively
used, and evidence exists that it has become one of the most frequently and widely
applied heuristic search methods in engineering, operations research, and design.
By October 2006 the well-known search engine Google returned over twenty mil-
lion entries upon the query ‘local search’. Applications of local search are abun-
dantly available in real life, and they are by no means limited to small-scale or
insignificant toy problems. On the contrary, fields are known where local search
provides a competitive edge to business and product engineering. For instance, in
chip design, the use of tools applying local-search-based techniques for determin-
ing area-effective silicon layouts has resulted in smaller chips than those that could
be obtained with other placement techniques, resulting in cost savings of several
million euros on a yearly basis as a result of increased production yield. The use
of local search techniques in logistics has enabled the computation of cost-effective
routes for the transportation of packets that need to be shipped over a complex net-
work of roads and railways. This improves throughput and shortens delivery time,
which in turn leads to substantial cost savings.

Over the years, a huge number of papers have appeared on local search. Closer
examination indicates that the vast majority of these papers is of an experimental
nature. This observation reflects very well the position that local search has been
taking now for almost half a century: it is primarily seen as a practical tool for
which not much can be said from a theoretical point of view. Although we largely
agree with this classification, it would be short sighted to consider the theory of
local search as being insignificant.

Apart from a number of specific isolated results, one can identify three main
topics of theoretical work relating to local search. In the first place, performance
guarantees have been studied regarding the quality of solutions obtained with lo-
cal search. Secondly, one has started to investigate the time complexity of local
search. On the one hand, this has led to problem-specific results on the number of
iterations required to reach a local optimum. On the other hand, a general theory
on the time complexity of local search has been developed. This theory is the local
search counterpart of the theory of NP-completeness. It can be used to prove the
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intractability of finding a local optimum for some local search problems. As a third
topic of theoretical work, we mention the asymptotic convergence of local search in
the case where a probabilistic iteration mechanism is applied. Simulated annealing
is probably the best known example of such a probabilistic variant of local search.

The aim of this book is to bring together the theoretical results relating to local
search, following the tripartition given above. We do not intend to completely cover
all theoretical results presented in the literature. Instead, we use a small set of
classical combinatorial optimization problems as running examples, particularly the
traveling salesman problem and machine scheduling. The results we prove for these
problems can be considered typical for the results that can be found in this area.
Since we restrict ourselves to theoretical results, this book should not be considered
as a handbook on how to apply local search in practice. For example, we do not
give any specific implementation details of the various local search metaheuristics,
such as simulated annealing and tabu search. However, we aim at giving a better
understanding of the fundamental behavior of local search.

The organization of this book is as follows. The introductory chapter positions
local search within the field of combinatorial optimization, and presents basic def-
initions and terminology. Chapter 2 presents basic neighborhood functions for a
number of classical combinatorial optimization problems. Chapter 3 illustrates the
use of indirect representations for several machine scheduling problems. Chapter 4
discusses properties of neighborhood functions. It considers degree and diameter
of neighborhood graphs as well as dominance relations between different neighbor-
hood functions. In Chapter 5, we give several examples of performance guarantees
for local minima of given neighborhood functions and we show, for some specific
examples, that local optimality implies global optimality. Chapter 6 addresses the
computational complexity of finding a local optimum for a given combinatorial op-
timization problem and a given neighborhood function. It discusses the complex-
ity class PLS, and gives examples of PLS-complete problems and related PLS-
reductions. Most of the results presented up to Chapter 6 relate to iterative improve-
ment. In Chapter 7 we discuss metaheuristics that potentially give higher-quality
solutions. These metaheuristics either allow non-improving moves, such as simu-
lated annealing and tabu search, or use multiple runs, such as iterated local search
and genetic local search. Finally, Chapter 8 deals with the asymptotic convergence
of simulated annealing using the theory of Markov chains.

The presentation of this book is at a graduate level. The book can serve as an
introductory textbook on the theory of local search. It contains many theorems and
corresponding proofs as well as bibliographical notes and clarifying exercises. This
makes the book quite suitable for students in mathematics, computer science, and
electrical and industrial engineering. We recommend reading the chapters in the
order in which they are presented. However, most of the chapters are reasonably
self-contained, and the reader might like to immediately jump to a chapter of his or
her interest. Nevertheless, we recommend the reader to at least read Chapter 1 for
basic terminology. Some of the sections are marked with an asterisk, indicating that
they provide additional material that can possibly be skipped.

Eindhoven, October 2006 Wil Michiels, Emile Aarts, Jan Korst
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Introduction

In many different fields, including management science, computer science, and elec-
trical and industrial engineering, we are confronted with combinatorial optimization
problems. In such problems we are given a finite or countably infinite set of solu-
tions from which we have to find one that minimizes or maximizes a given cost
function. One of the best studied combinatorial optimization problems is the TRAV-
ELING SALESMAN PROBLEM (TSP), which can be formulated as follows. Consider
a salesman who wants to visit each city from a set of n cities exactly once and who
wants to end up in the same city in which he started, where the distance between
any two cities is given. In what order should the salesman visit the cities, such that
the traveled distance is minimal? To see that this problem is indeed a combinatorial
optimization problem, observe that it corresponds to picking a tour with minimum
length from the finite set of all possible tours visiting the » cities.

As a representation of a tour we can use a permutation of the cities that is given
by t = (1(1),7(2),...,t(n)), where t(i) denotes the ith city visited in the tour. As
the number of tours, which equals the number of permutations, is factorial in the
number of cities, it grows exponentially with the number of cities. More specifically,
for one hundred cities the number of tours exceeds 10'°°, which is larger than the
estimated number of particles in the universe. So the solution space is extremely
large, and the search for the optimum tour by evaluating them all is impracticable.

The formulation of TSP is characteristic of combinatorial optimization problems.
Such problems, more specifically their solution space, can typically be formulated in
terms of discrete structures, such as sequences, permutations, graphs, and partitions.
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This use of discrete structures and the use of sophisticated algorithms that work on
these structures, positions combinatorial optimization, which is the discipline that
deals with combinatorial optimization problems, at the intersection of two well-
developed scientific fields: discrete mathematics and computer science.

A major achievement in combinatorial optimization is the development of com-
putational complexity theory. This theory formalizes the difference between easy
and hard problems. A problem is called easy if it can be solved by a polynomial-
time algorithm, where we say that an algorithm solves a problem if it always returns
an optimal solution. A problem is called hard, formally referred to as NP-hard, if it
is commonly believed that a polynomial-time algorithm that solves it does not ex-
ist. Many interesting combinatorial optimization problems, including TSP, have this
property. We assume the reader to be acquainted with the basics of complexity the-
ory. If not, the reader is referred to the standard work of Garey & Johnson [1979].
An overview of the discipline is given in Appendix B.

When confronted with an NP-hard combinatorial optimization problem, we have
two options for tackling it. The first option is to aim for an optimal solution, despite
the NP-hardness of the problem. One reason why this can still be feasible is that the
instances at hand may have some special structure that makes the special case easy
to solve. Another reason is that having an exponential running time does not nec-
essarily mean that an algorithm based on enumeration, such as branch-and-bound,
cannot be useful. It can, for instance, be adequate if one is interested in solving rel-
atively small problem instances. Furthermore, the NP-hardness of a problem only
indicates that (most probably) no algorithm exists with a worst-case polynomial
running time. The average-case running time, however, can be much better than the
worst-case running time.

A second option for tackling an NP-hard combinatorial optimization problem
is to use a heuristic algorithm. Solutions found by such an algorithm are not nec-
essarily optimal, but they are found within an acceptable amount of time. Hence,
heuristic algorithms trade off optimality against computing time.

Heuristic algorithms can be classified into two categories: constructive algo-
rithms and local search algorithms. A constructive algorithm generates a solution
through a number of steps, where in each step the partial solution obtained so far is
extended until in the last step a complete solution is obtained. The order in which
the steps are carried out and the actions performed in each step are often strongly
problem dependent. Local search algorithms, on the other hand, try to find high-
quality solutions by searching through the solution space. More precisely, these
algorithms start with an initial solution and then iteratively generate a new solution
that is ‘near’ to the current solution. A neighborhood function defines for a given
solution the solutions that are near to it. As mentioned above, solutions of many
combinatorial optimization problems can be represented by discrete structures such
as sequences, permutations, graphs, and partitions. Local search algorithms typi-
cally use these representations by defining neighborhood functions in terms of local
rearrangements, such as swapping, moving, and/or replacing items, that may be
applied to a representation to obtain a neighboring solution.
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In this book, we focus on local search algorithms. In practice, excellent results
have been obtained by using local search algorithms for a wide variety of problems.
This has led to a growing interest in theoretical results concerning the approach in
the past two decades. However, many problems are still open as a challenge for the
interested reader. The material presented in this book can be subdivided into two
main categories: on the one hand, theory and results that are problem independent,
and on the other hand more dedicated results for several classical combinatorial
optimization problems. Besides having their own merits, we hope the latter results
help the reader to derive similar results for other problems.

We remark that this book should not be considered as a handbook on how to
apply local search in practice. For instance, we do not give any specific details on
how to implement various local search metaheuristics, such as simulated anneal-
ing and tabu search. The aim of this book is to give a better understanding of the
fundamental behavior of local search by proving theoretical results.

1.1 Basics of Local Search

As mentioned, this book deals with combinatorial optimization problems. These
problems can be formalized as follows.

Definition 1.1. An instance of a combinatorial optimization problem is a pair
(S, f), where the solution space S is a finite or countably infinite set of solutions
and the cost function f is a mapping f : S — R that assigns a real value to each
solution in § called the cost of the solution. O

Definition 1.2. A combinatorial optimization problem 11 is specified by a set of
problem instances and it is either a minimization or a maximization problem. The
problem is to find for a given instance (S, f) a solution s* € S that is globally optimal.
For a minimization problem, this means that f(s*) < f(s) has to hold for all s € S,
and for a maximization problem it means that f(s*) > f(s) has to hold for all s € S.
If no confusion can arise, a globally optimal solution is simply called optimal. O

In this definition the adjective ‘combinatorial’ refers to the constraint that S has to
be finite or countably infinite. If this constraint does not hold, then the problem is
called an optimization problem. In a problem instance (S, f) of TSP, set S consists
of all possible tours over a given number of cities and f defines for each tour in
S its length. We note that a problem instance (S, f) is generally defined implicitly
by using a compact data representation and not by giving the complete solution set
S and the cost of each solution. A problem instance of TSP can, for instance, be
defined by giving for each pair i, j of cities the distance from city i to j. The size of
the representation, expressed as the number of bits required for storing it, is called
the size of the problem instance. An algorithm is called a polynomial-time algorithm
if its running time is polynomial in the size of a problem instance. Otherwise, it is
called exponential.

We consider local search algorithms for tackling combinatorial optimization
problems. The key feature of these algorithms is their neighborhood function. This
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function specifies, for each solution, which solutions are in some sense near to it.
The neighborhood function is generally defined in terms of small changes that may
be applied to a solution to obtain a neighboring solution.

Definition 1.3. For an instance (S, f) of a combinatorial optimization problem, a
neighborhood function is a mapping N : § — 25, where 25 denotes the powerset
{V|v C S}. The neighborhood function specifies for each solution s € S a set
N(s) C S, which is called the neighborhood of s. The cardinality of N(s) is called
the neighborhood size of s. We say that solution s’ is a neighbor of s if s' € N(s). The
neighborhood function N is said to be symmetric in the case that we have s’ € N(s)
if and only if s € N(s'). O

Throughout this section, we let S and f define a problem instance of an arbitrary
combinatorial optimization problem and we let N be an arbitrary neighborhood
function for S. Furthermore, without loss of generality we only consider minimiza-
tion problems. A maximization problem can be transformed into a minimization
problem by reversing the sign of cost function f.

A local search algorithm starts with an initial solution that is constructed by
some heuristic algorithm. Next, the local search algorithm searches through the
solution space by continually moving from a solution to one of its neighbors. This
process can be modeled as a walk through the neighborhood graph.

Definition 1.4. The neighborhood graph of an instance (S, f) of a combinatorial
optimization problem and an accompanying neighborhood function N is a directed
node-weighted graph G = (V,E). The node set V is given by the set S of solutions,
and the arc set E is defined such that (i, j) € E if and only if j € N(i). Furthermore,
we define the weight of a node as the cost of the corresponding solution. If the
neighborhood function is symmetric, then the directed graph can be simplified to an
undirected graph by replacing arcs (i, j) and (j,i) by a single edge {i, j}. O

We note that the neighborhood functions used in practice are almost always sym-
metric. We assume the reader to be familiar with basic graph theory. An overview
of the basic graph theory concepts used in this book is presented in Appendix A.

Definition 1.5. A solution j is reachable from solution i if the neighborhood graph
G contains a path from 7 to j. This means that a sequence of solutions sy,s2,. ..,
exists with k > 1 such that s; =i, sy = j, and 5,41 € N(s;) with 1 <1 < k. ]

Definition 1.6. A neighborhood graph is strongly connected if, for each pair i, j of
solutions, j is reachable from i. A neighborhood graph is weakly optimally con-
nected if, for each solution i, it contains a path from 7 to an optimal solution. O

Different strategies have been proposed for walking through a neighborhood graph.
The most obvious strategy is used by the iterative improvement algorithm, also
known as the hill climbing algorithm. This is the basic local search algorithm. In
each iteration, the algorithm searches in the neighborhood of the current solution
for a solution with better cost. If such a solution is found, it replaces the current
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solution. Otherwise, the algorithm stops and returns the current locally optimal
solution.

Definition 1.7. A solution § € S is called locally optimal with respect to N or N-
optimal if f(§) < f(s) for all s € N(3). m|

In this book, a star as superscript indicates global optimality and a hat indicates
local optimality. Hence, s* is a globally optimal solution, whereas § is locally, but
not necessarily globally optimal.

We note that if we have two different neighborhood functions Ny and N, for the
same problem instance and if N; is dominated by N, as defined below, then each
local (global) optimum for NV, is also a local (global) optimum for Nj.

Definition 1.8. Let N| and N, be two different neighborhood functions for the same
instance (S, f) of a combinatorial optimization problem. If for all solutions s € S we
have N (s) C Nx(s), then we say that N, dominates Nj. O

Instead of being modeled as a walk through a neighborhood graph, an execution of
iterative improvement can be modeled more precisely as a walk through a transition
graph.

Definition 1.9. The transition graph of an instance of a combinatorial optimization
problem and an accompanying neighborhood function is a directed, acyclic sub-
graph of their neighborhood graph G. It is obtained from G by deleting all arcs (i, j)
for which it holds that the cost of solution j is worse than or equal to the cost of
solution i. a

Note that a solution is locally optimal if and only if it has outdegree zero in the
transition graph. The rule used by iterative improvement to select a neighboring
solution in the case that a solution has multiple neighbors with a better cost is called
the pivoting rule. Well-known pivoting rules are first improvement and best improve-
ment. In first improvement we generate neighbors and we accept the first solution
encountered with better cost, where the neighbors can be generated randomly or in
some specified order. When using best improvement, we replace s by a best solution
in its neighborhood, provided that it has better cost. Figure 1.1 gives the iterative
improvement algorithm in pseudo-code. If the neighborhood function is exact, then
the algorithm is guaranteed to give a globally optimal solution.

Definition 1.10. A neighborhood function is called exact if each local optimum is
also a global optimum. O

Example 1.1. To illustrate the definitions given above, consider the problem in-
stance (S, f) and the (symmetric) neighborhood function N defined in Table 1.1.
Figure 1.2 depicts the corresponding neighborhood graph. The figure also shows
the corresponding transition graph, which can be derived from the neighborhood
graph. The problem instance has two global optima, namely solutions 3 and 6. Fur-
thermore, solution 1 is a local optimum. This implies that the neighborhood function
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algorithm Iterative Improvement

begin
s := some initial solution;
repeat

generate an s’ € N(s);
if £(s') < f(s) then s :=s';
until f(s") > f(s) forall s’ € N(s);
end;

Figure 1.1. Iterative improvement algorithm for a minimization problem. The first-
improvement pivoting rule generates neighbors from N(s) at random or in some
specified order. The best-improvement pivoting rule generates a neighbor from N (s)
with lowest cost.

we consider is not exact. To make it exact, it suffices to change the neighborhood
function such that solutions 1 and 3 are neighbors of each other.

The neighborhood graph of Figure 1.2 contains two disconnected components:
the subgraph G; induced by solutions 1, 2, 3, and 4 and the subgraph G, induced
by solutions 5, 6, and 7. Solutions from G are not reachable from solutions from
G> and vice versa. Hence, the neighborhood graph of Figure 1.2 is not strongly
connected. However, as G; and G; both contain a global optimum it is weakly
optimally connected. O

One often uses the metaphor of walking in a mountainous region to get an intuitive
idea of local search. Consider an instance of a minimization problem. If we define
the height of a solution as its cost, then walking through a neighborhood graph to
find a global optimum can be seen as walking on a three-dimensional surface to find
the lowest point. This looks like walking in a dense fog over the surface of the earth
with its mountains and valleys, where we are looking for the lowest point and we
cannot see farther than one step ahead. Furthermore, a local optimum corresponds
to the lowest point in a valley and applying iterative improvement means that we
only allow downhill moves.

A major drawback of applying iterative improvement is that it may get trapped
in poor local optima. One way to tackle this problem is to find a better, possibly
more complex, neighborhood function. Alternatively, one can allow non-improving
moves or perform multiple runs of iterative improvement. The latter two approaches
are frequently used in practice and often with success. The most popular local search
algorithms based on them are discussed in Chapter 7.

The performance of iterative improvement is determined not only by the quality
of the local optima, but also by the time it takes to reach a local optimum. The time
required to reach a local optimum is determined by two aspects: the time needed for
moving from one solution to the next and the number of solutions that are visited
before one arrives at a local optimum. To keep the first part small, it is important
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Table 1.1. Problem instance (S, ) with S = {1,2,...,7} and neighborhood function
N discussed in Example 1.1.

solution  f(s)  N(s) solution  f(s)  N(s)
1 2 {2 5 2 {6}
2 3 {1,3} 6 1 {57}
3 1 {2,4) 7 2 {6}
4

2 {3

that the outdegree of the nodes in the neighborhood graph is not too large, i.e., the
cardinality of the neighborhoods of solutions may not be too large. Consider, for
instance, the extreme case in which the neighborhood graph is a complete graph.
This means that for each i,j € S, we have i € N(j). We then have high-quality
local optima because the neighborhood function is exact. However, testing for local
optimality and finding a better neighbor in the case that a solution is not locally
optimal comes down to solving the original problem.

To keep the number of iterations to reach a local optimum small, it is important
that the transition graph has a small ‘potential’.

Definition 1.11. Let T be a transition graph, and let V be the nodes in T with out-
degree zero, i.e., the nodes that correspond to local optima. The potential of a node
v is defined as the minimum distance of v to a node in V, where the distance from
node i to j is defined as the minimum number of arcs in a connecting path from i to
Jj. The potential of transition graph 7T is the maximum potential over all its nodes.

O

The potential of a transition graph gives a lower bound on the number of iterations
that are maximally required by iterative improvement if it can select an arbitrary
solution as the starting solution. The lower bound is tight whenever an optimal
pivoting rule is used, where optimal means that a shortest path to a locally optimal
solution is chosen.

As mentioned, local search algorithms that admit non-improving moves are of-
ten used in practice to overcome the problem of ending up in poor local optima.
In the remainder of this section, we consider such algorithms and discuss some re-
lated issues. First, we observe that they can still result in low-quality solutions if
a neighborhood graph consists of several disconnected components, i.e., if the so-
lution space can be partitioned into subsets Vi,Va,...,V,,, such that from solution
i € V; only other solutions from V; can be reached. If in that case we start with
a solution from a subset V; with only low-quality solutions, then the local search
algorithm still has a poor performance. Obviously, this problem does not occur if
we require the neighborhood graph to be strongly connected. However, when we
start with an initial solution i, we are actually not interested in whether all solu-
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COSt

LAV LN

e

1 2 3 4 5 6 7 1 2 3 4 5 6 7
—_— —_—
solution solution
Neighborhood graph Transition graph

Figure 1.2. Neighborhood graph and transition graph of the problem instance and
neighborhood function defined in Table 1.1. The number written inside a node
defines its weight, i.e., the cost of the solution it represents.

tions are reachable. We only want to know whether we can reach a global optimum.
Hence, the condition that the neighborhood graph must be strongly connected can
be weakened to that it must be weakly optimally connected.

We do not only want that a global optimum is reachable. We also want it to
be reachable within a reasonable number of steps. This is realized in a strongly
connected neighborhood graph if its diameter is not too large.

Definition 1.12. The diameter of a neighborhood graph is the maximum distance
between any pair of nodes, where the distance is as defined in Definition 1.11. If
the neighborhood graph is not strongly connected, then its diameter is defined to be
infinitely large. O

Although the performance of a local search algorithm generally improves by allow-
ing deteriorating moves, it should not be too eager to carry out these moves in order
to prevent it from carrying out a random search. As a result, the difficulty in reach-
ing a solution j from a solution i via a path p strongly depends on the height of the
path.

Definition 1.13. Let p = (s1,52,...,sx) be a path in a neighborhood graph, where s;
is the ith node in the path. Then the height of path p is given by the maximum label
of any of its nodes, i.e., by max;<;<x f(s;). O

Using this definition, we can define the depth of a local optimum to express how
hard it is to escape it.

Definition 1.14. Let § € S be a local optimum. The depth of § is defined as the
minimum height of a path p from § to a solution s with f(s) < f($). If such a
solution s does not exist, then the depth of § is co. O

To obtain an effective local search algorithm, it is important that the solution space
does not contain large plateaus, where a plateau refers to a part of the solution
space in which all solutions have (approximately) the same value. On a plateau
it is difficult for a local search algorithm to guide itself to better solutions as all
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directions look the same. Another problem arising on plateaus is cycling. Cycling
means that the algorithm revisits solutions over and over again. If, for instance,
we have a plateau containing two local optima, s and s', that are neighbors of each
other, have the same cost, and are surrounded by solutions with very high cost, then
a local search algorithm will tend to alternate between s and s’. To avoid cycling
a local search algorithm can remember the last visited solutions or fingerprints of
these solutions.

1.2 Outline of the Book

The remainder of this book is organized as follows. In the next chapter we present
some classical combinatorial optimization problems with accompanying neighbor-
hood functions. Besides illustrating how the use of different solution representations
may give rise to different neighborhood functions, these are the problems and neigh-
borhood functions for which we prove problem-dependent results in this book.

Neighborhood function can be based on representations that directly define a
solution and on representations that indirectly define a solution. In Chapter 3 we
show the use of indirect representations. In Chapter 4 we derive properties of neigh-
borhood functions, such as the diameter and connectivity of their corresponding
neighborhood graph. Performance guarantees for neighborhood functions, i.e., for
their local optima, are proved in Chapter 5. In this chapter we also prove the nega-
tive result that if it is NP-hard to find an R-approximate solution for some problem,
then the problem does not admit an efficient neighborhood function with a perfor-
mance bound of R. While Chapter 5 relates to the quality of local optima, Chapter 6
is concerned with the time complexity of finding a local optimum. This includes a
formal theory that is similar to the theory of NP-completeness.

Chapter 7 elaborates on several different techniques to overcome the problem
that iterative improvement stops at the first local optimum it encounters. One of
the techniques presented is simulated annealing, for which we prove in Chapter 8
that, under some mild conditions, it converges asymptotically to the set of globally
optimal solutions.

1.3 Bibliographical Notes

Classical textbooks on combinatorial optimization are Cook, Cunningham, Pulley-
blank & Schrijver [1998], Korte & Vygen [2002], Lawler [1976], Nemhauser &
Wolsey [1988], and Papadimitriou & Steiglitz [1982]. All these textbook have been
written for a more advanced audience. Foulds [1984] presents a more introduc-
tory textbook written at the undergraduate level. Beale [1988] presents a more
general introduction to optimization with a chapter on combinatorial optimization.
Recently, Schrijver [2003] published a three-volume textbook that provides a quite
elaborate and in-depth presentation of the field with a wealth of references to the ex-
isting literature. Annotated bibliographies on combinatorial optimization are given
by O’Heigeartaigh, Lenstra & Rinnooy Kan [1985] and Dell’ Amico, Maffioli &
Martello [1997].
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Aarts & Lenstra [1997] present an overview of both theoretical and practical as-
pects of local search. Hoos & Stiitzle [2004] present a book that serves as a practical
guide to the application of local search algorithms and its many variants. A gentle
introduction to local search is given by Michalewicz & Fogel [2000]. Overviews on
local search algorithms are given by Glover & Kochenberger [2003], Reeves [1993],
and Ribeiro & Hansen [2002]. An annotated bibliography on local search is given
by Aarts & Verhoeven [1997].

1.4 Exercises

1. The set A = {1,3,6,9} of integers is given. We define the cost of a sequence T
of the numbers in A as f(t) = ¥#_, it(i), where each number of A occurs exactly
once in T and where (i) denotes the ith integer in .

We consider the problem of finding a sequence T over A that minimizes f(T).
This problem is equivalent to finding a descending ordering of the numbers in A.

a) Give the solution space of the described problem instance.
b) Give the cost of each solution/sequence.

Consider the swap neighborhood function in which sequence T is a neighbor of
sequence T if and only if T’ can be obtained from T by changing the order of two
adjacent numbers.

¢) Give the neighborhood graph for the swap neighborhood function.
d) Give the transition graph for the swap neighborhood function.

e) Verify that the swap neighborhood function is exact.

f) Determine the depth of the local optima.

2. Consider the iterative improvement algorithm described in Figure 1.1. We apply
this algorithm to the problem instance of Exercise 1, where an initial solution
is selected uniformly at random. Show that applying the best-improvement piv-
oting rule results in a smaller expected number of iterations than applying the

first-improvement pivoting rule, where the first-improvement pivoting rule gen-
erates neighbors uniformly at random.

3. We defined iterative improvement such that a neighbor is only accepted if it has
strictly better cost. Give a reason to not accept a neighbor that has equal cost.
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We discuss some classical combinatorial optimization problems and present neigh-
borhood functions for them in Sections 2.1 to 2.5. Furthermore, we discuss an
interesting link between local search in combinatorial optimization and neural com-
puting in Section 2.6.

2.1 Traveling Salesman Problem

One of the most studied combinatorial optimization problems is the TRAVELING
SALESMAN PROBLEM. In its general form the problem is defined as follows.

Definition 2.1 [TRAVELING SALESMAN PROBLEM (TSP)]. Given are a set of #n cities de-
noted by C = {1,2,...,n} and an n x n matrix d, where d;; € N* defines the distance
from city i to city j. Find a tour with minimum total tour length, i.e., find a permu-
tation T of C that minimizes

n—1
D dr(i) (it 1) + de(n) 2(1)-
i=1
O

In this definition permutation T specifies the tour in which (i) is the ith city that
is visited. Correspondingly, we write a permutation T as T = (t(1),7(2),...,t(n)).
This must not be confused with the alternative cyclic notation, where (iy,i2,...,i,)
means that i is the image of i, and that i;,; is the image of i; for 1 < j < n. This
cyclic notation is also frequently used in the literature to define tours, but then t(i;)
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Figure 2.1. (a) Complete directed arc-weighted graph corresponding to the problem
instance discussed in Example 2.1. (b) Hamiltonian cycle corresponding to the tour
t=(1,3,2,4).

specifies the city visited directly after city i;. The former notation is used for all
permutations occurring in this book because permutations will in most cases define
arrangements, i.e., mappings from positions to some kind of items.

TSP can be viewed as finding a minimum weighted Hamiltonian cycle in a com-
plete, directed, arc-weighted graph with n nodes, where the weight of an arc (i, j) is
given by the distance d;; from city i to city j. Correspondingly, we use terminology
such as an arc of a tour. If in this book we write (t(j),t(j + 1)) to denote an arc of
a tour T, then we mean arc (t(n),t(0)) in the case where j = n.

Example 2.1. Consider the problem instance of TSP in which we are given four
cities that represent the corners of a four-by-three rectangle. This means that we are
given the cities 1, 2, 3, and 4 and the distance matrix

0 4 3 5
4 0 5 3
d= 350 4
5340

Then a one-to-one correspondence exists between tours for this problem instance
and Hamiltonian cycles in the complete, directed, arc-weighted graph depicted in
Figure 2.1(a). For instance, the tour T = (1,3,2,4) that starts in city 1 and, before
returning to it, successively visits cities 3, 2, and 4 corresponds to the Hamiltonian
cycle depicted in Figure 2.1(b). The length of the tour is given by the total weight
of the arcs in the Hamiltonian cycle, which in this case is 16. O

For a problem instance of TSP, the size of the solution space is given by the number
of different tours. As a tour is determined by the order in which it visits the cities and
not by the city in which it starts, this number is given by the number of permutations
of C divided by n. Hence, the size of the solution space is (n — 1)!.

TSP is one of the most difficult problems in the class of NP-hard problems.
Even finding a tour whose length is guaranteed to be within 27 () times the optimal
length for some arbitrary fixed polynomial p is already NP-hard. However, in many
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applications we are only interested in a special case of TSP, where the distance
matrix satisfies some natural conditions. For example, the distance matrix is often
symmetric, which means that d;; = dj; holds for each pair 7, j € C. In this case, we
can consider the Hamiltonian cycle that represents a tour to be undirected. Note that
this implies that the size of the solution space halves.

Besides being symmetric, the distance matrix often also satisfies the triangle
inequality. This constraint states that moving from city i to j via k is not shorter
than moving from i directly to j. Formally, this means that d;; < dj; + di; holds for
all i, j, k. The triangle inequality is, for instance, satisfied if the cities are points in
an m-dimensional space for some m > 1 and if we consider the Euclidean distance
matrix, which means that for i = (x,x2,...,x») and j = (y1,y2,...,ym) the distance
from city i to j is given by

iy = Jbr =P+ B =yal? 4+ =l
For two-dimensional space, the equation above defines the Euclidean distance
dij = /|x1 =12 + P2 = 22

The variant of TSP in which the distance matrix is constrained to be symmetric
is called SYMMETRIC TSP. If, in addition, the distance matrix has to satisfy the
triangle inequality, then the problem is called METRIC TSP, and the special case of
METRIC TSP in which we assume that the cities lie in two-dimensional space and
that the distance matrix is Euclidean is referred to as EUCLIDEAN TSP. Note that
Example 2.1 discusses a problem instance of EUCLIDEAN TSP. When formulating a
result we use the fact that we need not explicitly give each variant of TSP for which
it holds. Positive results translate directly to more restricted problems and negative
results to less restricted problems.

Since computers cannot cope with real numbers of arbitrary precision, we de-
fined TSP such that all distances have integer values. For TSP, SYMMETRIC TSP,
and METRIC TSP this constraint is reasonable. If an application implies a real-
valued distance d;;, then the effect of increasing it to the smallest integer larger than
dij, i.e., to {d,- ﬂ, can be made arbitrarily small by choosing a finer granularity. For
EUCLIDEAN TSP this trick causes a problem because if the distance d;; from city
i = (x1,x2) to j = (y1,y2) is increased to

[dij] = [\/Im —yi2+ Ixz—yzlﬂ , @2.1)

then it is no longer Euclidean. A straightforward way to solve this problem is to
redefine EUCLIDEAN TSP such that the distance from city i to j is given by (2.1). To
simplify the discussion, we nevertheless assume throughout this book the original
definition d;; = \/ |x1 — 1|2+ |x2 — y2|%>, which means that we allow real-valued
distances. It can be verified that, by choosing a fine enough granularity, all results
we derive also hold for this more properly defined problem.

All four proposed variants of TSP are strongly NP-hard. Hence, from a complex-
ity point of view, they are all equally hard to solve. However, the theorem below
states that they are not all equally hard to approximate. More precisely, the theorem
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Apx NPO

TSP
SYMMETRIC TSP

PTAS
@ FPTAS

METRIC TSP

EUCLIDEAN TSP

Figure 2.2. Position of the different variants of TSP in the existing approximabil-
ity classes in the case that P # NP. The approximability classes are discussed in
Appendix B.

states that the variants are positioned in the existing approximability classes as indi-
cated in Figure 2.2. If one is not familiar with the terminology used in the theorem
and in the figure, we refer to Appendix B. The theorem gives a survey of complexity
results scattered in the literature. In the proof of the theorem, we restrict ourselves
to giving references to where the results are proved.

Theorem 2.1. For the different variants of TSP, we have the following complexity
results.

e Both for TSP and SYMMETRIC TSP, even finding a tour with a length at most
27" times the optimal tour length is NP-hard, where p is an arbitrary fixed
polynomial.

e For METRIC TSP, a polynomial-time %-approximation algorithm exists, but

finding a tour with length at most %%g times the optimal tour length is NP-
hard.

e For EUCLIDEAN TSP, a PTAS exists, but, unless P = NP, the problem does not
admit a FPTAS.

Proof. The result for SYMMETRIC TSP, which also implies the result for standard
TSP, is proved by Sahni & Gonzalez [1976].

For METRIC TSP, Christofides [1976] proposes a polynomial-time algorithm for
which he proves that it has a performance bound of 3, and Cornuejols & Nemhauser
[1978] show that this performance bound is tight. Currently, no polynomial-time
algorithm exists for which a better worst-case performance bound has been derived.
Furthermore, Papadimitriou & Vempala [2000] prove that unless P = NP, METRIC
TSP cannot be approximated in polynomial time within %%8 times the optimum.

For EUCLIDEAN TSP, Arora [1998] derives a PTAS. This is the best we can hope
for as Papadimitriou [1977] and Garey, Graham & Johnson [1976] prove that the
problem is strongly NP-hard, which implies that it does not admit a FPTAS, unless
P = NP [Ausiello et al., 1999]. O
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€l

() (b)

Figure 2.3. (a) Original tour. (b) Only tour that can be obtained by replacing edges
e1 and e; by two new edges.

k-change. A well-known local search algorithm for TSP is k-Opt, which is iterative
improvement based on the k-change neighborhood function. A tour is a neighbor of
a tour with respect to this neighborhood function if it can be obtained by performing
a k-change. A k-change operation deletes kK’ < k edges and replaces them with &’
new edges, such that we again get a feasible tour, i.e., a Hamiltonian cycle. In
practice, one generally uses k = 2,3. Note that if we consider TSP in its general
form, in which case the distance matrix does not have to be symmetric, then a tour
contains arcs instead of edges. We then obtain a k-change neighbor of a tour T by
first undirecting tour T, by next performing a k-change, and by finally choosing one
of the two possible directions for the derived tour.

As an example, let k = 2 and consider a problem instance of SYMMETRIC TSP
with twelve cities. Furthermore, let T be an arbitrary tour. In Figure 2.3(a) tour T
is visualized by a circle containing the cities in the order in which they are visited.
The real distances between cities are not related to the distances in the figure. This
is a commonly used approach for visualizing a tour. As mentioned, a 2-change
removes at most 2 edges from the tour and replaces them by new ones. Obviously,
we cannot replace a single edge by a new one. Hence, the only non-trivial 2-changes
are those in which two edges e; and e; are replaced by two new edges. For some
choice of e; and e;, Figure 2.3(b) shows the only way to do this in such a way
that a feasible tour is obtained. It can be verified that if e; and e, are successive
edges, then it is not possible to construct a feasible tour by adding two new edges.
Hence, the neighborhood of tour T contains tour T, which is obtained by replacing
zero edges, and one neighbor for each choice of two non-successive edges e; and
e>. This implies that tour T has 1 +n(n — 3) /2 = 55 neighbors in total. Stated more
generally, we find that for any problem instance of SYMMETRIC TSP and for any
tour T, the 2-change neighborhood size is 1 +n(n—3)/2 = ©(n?). Note that if the
distance matrix need not be symmetric, then we also have to choose the direction
of the tour, which implies that the neighborhood size increases by a factor of two to
2+n(n—3). By inspecting Figure 2.3, it can be verified that applying a 2-change to
a tour corresponds to reversing some segment of the tour. An example of a 3-change
is given in Figure 2.4.

For SYMMETRIC TSP an advantage of the k-change neighborhood function is
that if we know the length [ of a tour T and we want to know the length I’ of a
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(@) (b) (©)
(d ©)]

Figure 2.4. (a) Original tour. (b)-(e) Tours obtained by performing a 3-change on
the edges eg, ez, and e3.

neighboring tour v’ of T, then we do not have to derive I’ from scratch, which would
take ©(n) time, but we can use the value [ to derive it in constant time. More
specifically, we have

14 14
'=1- Zd(e,-) + Zd(e:»),
i=1 i=1

where d(e) denotes d;; for an edge e = {i, j} and where the edges e1,es,. . .,ep with
k' < k are removed and the edges ey, e»,...,ep are added by the k-change that turns
T into 7. As the 2-change neighborhood size is @(nz), as we derived above, this
implies that for the 2-change neighborhood function a single iteration of iterative
improvement can be implemented to run in O(n?) time.

Example 2.2. Figure 2.5 depicts the five western islands of the Canary Islands.
A man living in Maspalomas wants to visit the cities Santa Cruz de la Palma, San
Sebastian, Playa de las Americas, and Valverde by boat. To save fuel, he is interested
in finding the shortest tour that starts and ends in Maspalomas and that visits each
of these cities exactly once. This means that he wants to solve a TSP instance with
five cities. The five cities are all reachable by boat, and the distances in kilometers
between the cities are given by the symmetric distance matrix

0 233 152 118 227
223 0 95 115 90
d=1| 152 95 0 30 93
118 115 30 0 115
227 90 93 115 O

Entry d;; gives the distance from city i to city j.
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Santa Cruz
de la Palma

o .

San Sebastian  Playa de las

Valverde Americas
< ; Maspalomas

Figure 2.5. Five cities in the Canary Islands for which we want to find the shortest
tour.
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Figure 2.6. (a) Neighborhood graph of Example 2.2, where we omit loops. Inside
a node, we write its weight, i.e., the cost of the corresponding tour. (b) The same
graph, where only the edges are drawn in which this graph differs from the complete
bipartite graph.

Consider the 2-change neighborhood function for this problem instance. If we
leave loops out of consideration, the neighborhood graph is given by the bipartite
graph B = (V,U,E) depicted in Figure 2.6(a). In the figure we use the fact that, as the
direction of the tour is irrelevant, we only have to consider tours in which the cities
1, 2, and 5 are visited in increasing order. The neighborhood graph is a complete
bipartite graph, except that, for each node v € V, a unique node g(v) € U exists, such
that the edge {v,g(v)} is missing; see Figure 2.6(b). Obviously, the minimum length
of a path between two solutions i and j, i # j, expressed in the number of edges,
is two if i and j both belong to either subset V or subset U. If, on the other hand,
i €V and j € U (or vice versa), then this length is three if j = g(i) (i = g(;j)) and
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(2) (b)

Figure 2.7. (a) Original tour. (b) Tour obtained by a node-insertion move.

one otherwise. As a consequence, the diameter of the neighborhood graph is three.
Furthermore, it follows from the graph that the neighborhood function is exact for
this example and that the optimal tour has a cost of 560 and is given by (1,4,3,2,5).
This means that the shortest tour takes 560 kilometers and successively visits Playa
de las Americas, San Sebastian, Santa Cruz de la Palma, and Valverde. O

The example shows that for five cities, the 2-change neighborhood function has a
well-structured neighborhood graph. This is no exception, as can be seen as follows.
The construction of a k-change neighborhood graph for any problem instance of TSP
can be split into two steps. In the first step we define, for a problem instance with
the cities 1,2,...,n, the node set and edge set of the corresponding neighborhood
graph. In the second step we map the cities 1,2,...,n to the n cities we consider.
For Example 2.2 this means that we number the cities Maspalomas, Santa Cruz
de la Palma, San Sebastian, Playa de las Americas, and Valverde. The mapping
determines the weights that have to be assigned to the nodes of the neighborhood
graph. Obviously, by choosing a proper mapping, a node in the neighborhood graph
can be related to any tour for the considered problem instance. However, different
mappings imply different weight assignments. From this it follows that, with respect
to its structure, the k-change neighborhood graph looks the same viewed from any
node, i.e., the neighborhood graph is isotropic.

Definition 2.2. A permutation 7 of the node set of graph G = (V,E) is called an
automorphism if for all i, j € V, we have {i, j} € E if and only if {n(i),n(j)} € E.
O

Definition 2.3. A graph G = (V,E) is called isotropic if for all i, j € V an automor-
phism 7 exists that maps i to j, i.e., for which 7t(i) = j. |

Node insertion. A very simple alternative neighborhood function for TSP is node
insertion. For this neighborhood function the neighbors of a tour T are obtained
by deleting one city in T and inserting it at another position in the tour. Figure 2.7
shows a node-insertion move for a problem instance of SYMMETRIC TSP. Again,
the figure does not give an exact picture of the problem instance, but only shows the
order in which cities are visited.

An obvious generalization of node insertion is the neighborhood function that,
instead of inserting a single city, inserts a segment of successive cities between two
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neighboring cities elsewhere in the tour. The Or neighborhood function is defined in
this way, where the segment may consist of at most three cities. Because an Or move
can be written as a 3-change (see Exercise 2 in Chapter 4), the Or neighborhood
function can also be viewed as a restricted 3-change neighborhood function instead
of a generalized version of node insertion. This illustrates two techniques for fine
tuning a neighborhood function to one’s problem and resources: generalization,
which results in larger, more powerful neighborhoods that are, however, harder to
evaluate, and restriction, which results in smaller, less powerful neighborhoods that
are easier to evaluate.

2.2 Machine Scheduling

Machine scheduling is a generic name for a class of problems that are concerned
with the assignment of n jobs to m machines to optimize a given criterion. The jobs
may consist of multiple operations, and the machines can process at most one op-
eration at a time. A schedule specifies for each operation on which machine and in
which time interval it is processed. The set of jobs is given by J = {1,2,...,n} and
the set of machines by M = {1,2,...,m}. Each job may have a due date. The due
date is the time at which a job has to be completed. A job may be completed after
its due date, but this incurs a penalty. A particular machine scheduling problem is
specified by the three-field classification a|f|y, where o defines the machine envi-
ronment,  the job characteristics, and y the optimality criterion. We now discuss
these three characteristics in more detail.

Machine environment. The machine environment is given by o0 = o 0p, where 0
gives the type of the machines and o,y the number of machines. If we have o = o,
where o represents the empty symbol, then the number of machines is variable. If,
on the other hand, oy is given by a positive integer m, then we have a fixed number
m of machines. Next, consider o/;, which is an element of {o,P,Q,R,F,0,J}. For
oy € {o,P,Q,R} we have a single-stage system. This means that each job j consists
of only one operation, which can be processed on any machine. The time required
for processing job j on machine i is denoted by p;; € N*. If we only have one
machine or if p;; is independent of 7, then we leave out the dependency on i in the
notation and simply write p;.

e 0; = o. We have only one machine on which all jobs have to be scheduled.
In this case o = 1 has to hold.

e 0 = P. We consider identical parallel machines. This means that the time
required for processing a job is equal on all machines.

e 0 = Q. We consider uniform parallel machines. Each job j has a fixed
processing requirement p, but the machines can have different speeds. This
means that the time required for processing job j on machine i is given by
pij = pj/si, where s; denotes the speed of machine i. If each machine has
speed 1, then we arrive at the previous case.

e 0y = R. We consider unrelated parallel machines. The processing require-
ments p;; may be arbitrary positive numbers.

Note that each case generalizes the previous one.
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Figure 2.8. Gantt chart for visualizing the schedules of Example 2.3. The execution
of an operation is represented by a box, the length of which is given by its processing
requirement.

For oy = F, 0, and J, we have a flow shop, open shop, and job shop, respectively.
In these cases we have a multi-stage system in which a job can consist of multiple
operations. In a schedule the time intervals at which operations of the same job are
being processed may not overlap.

Both in a flow shop and an open shop, we have that each job j is defined by a set
{olj,ozj, .. ,omj} of m operations. Operation o;; has to be processed on machine
i and its processing takes p;; € N* time units. The difference between a flow shop
and an open shop is that in the former case the operations of a job are processed in
increasing order, i.e., on the machines 1,2,...,m in that order, whereas in an open
shop choosing the machine routing for each job is part of the problem.

In a job shop, job j consists of m; operations {01 j,02;,. .. ,omjj}, which have to
be processed in that order. Operation o;; has to be processed on a given machine
uij for p;j € N* time units. Note that the i in p;; does not refer to a machine, as is
the case for the other choices of a;. It may be the case that different operations of
the same job have to be assigned to the same machine. This is, however, not true if
the operations are successive. Hence, u;; # 41, ; holds. Note that a flow shop is a
special case of a job shop, whereas an open shop is not.

Example 2.3. Consider a flow shop with two jobs and two machines. For the first
job, the processing requirements of its two operations are pj; =2 and p>; = 1 and
for the second job they are p;; =2 and p»; = 2. Figure 2.8(a) gives the best schedule
that can be obtained when scheduling job 1 before job 2. We see that the last job is
ready at time unit 6. If, however, we schedule the jobs the other way around, i.e.,
if job 2 is scheduled before job 1, then we obtain a schedule in which the last job
finishes at time unit 5. Hence, if it is our goal to minimize the total time required
for handling all jobs, the latter schedule outperforms the first one. O
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Job characteristics. The job characteristics are specified by B = B1B28384P5.

e (31 € {o,pmtn}. The abbreviation pmtn stands for preemption. Preemption
is allowed if we have B; = pmtn, and it is not allowed if we have f; = o. If
preemption is allowed, then the processing of operations may be interrupted,
i.e., jobs may be processed in multiple stages.

e [3; € {o,prec}. Variable B indicates whether (B2 = prec) or not (f2 = o)
precedence relations exist between the jobs. Precedence relations are gener-
ally specified by an acyclic directed graph. The jobs that have to be processed
form the node set of the graph, and an arc from job i to job j specifies that
job i has to be completed before we can start processing job j.

e B3 € {o,r;}. If we have B3 = r;, then jobs have release dates. The release date
of a job is the time from which it is available for processing. If, on the other
hand, we have 3 = o, then no release dates are specified, which is equivalent
to assuming r; = 0 forall j € J.

e B4 € {o,s;;}. If we have B4 = s;;, then jobs have sequence-dependent setup
times. This means that if job i is scheduled directly before job j on a given
machine, then it takes the machine s;; time units before it can start process-
ing job j after finishing job i. Furthermore, the setup time required before
processing the first job j on a machine is given by s¢;, and the clean-up time
after finishing the last job j on a machine is given by sj9. We do not have
sequence-dependent setup times if 4 = o.

o Bs € {o,pj =1,p;ij = 1}. If we have a; € {o,P,Q}, then s can be given by
pj = 1, which means that each job has unit processing requirement. Anal-
ogously, if we have o € {O,F,J}, then B5 can be given by p;; = 1, which
means that each operation has unit processing requirement. The processing
requirements may be arbitrary if f5 = o.

In the literature many other job characteristics are considered and added to . We
have restricted ourselves to giving the ones that are most common.

Optimality criterion. Before explaining optimality criterion Yy, we introduce some
definitions. If a job j consists of only one operation, then its completion time in a
schedule is denoted by C;. If it consists of multiple operations, then the completion
time of operation o;; is given by C;; and the completion time of the job is given by
C; = max; C;;. Knowing the completion time of a job j, we can compute its lateness
L; = C; —d;. The lateness is negative if a job is finished before its due date. If this
is undesnable we consider the tardiness T; = max(L;,0) of job j. The earliness
E; = max(d; — C;,0) of job j expresses how much time the job is finished before
1ts due date. Finally, if we are only interested in whether or not a job is on time, we
have U;, which is zero if C; < d; and one, otherwise.

Based on these deﬁnitions, we can now specify the optimality criterion by
VAS {man'Yj,man Wij:Zijij Wij} withy; € {CJ’,LJ', Tj,Ej,Uj} and with w; in-
dicating that the weighted version of the problem is considered, where the weights
are non-negative integers. The optimality criterion has to be minimized. For in-
stance, if we have y = max;w;C;, then we are given a non-negative weight for each
job and the problem is to minimize the maximum weighted completion time. We
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note that we usually write “Ymax’ instead of ‘max;y;” and that Cyax is called the
makespan.

A well-studied and basic machine scheduling problem is MULTIPROCESSOR
SCHEDULING. In this problem we have to schedule n independent jobs on m iden-
tical, parallel machines, such that the completion time of the last job is minimal.
Hence, the problem can be written as P||Cmax. Another classical problem is JOB
SHOP SCHEDULING, which can be written as J||Crax.

Finally, consider 1|s;j|Cmax, in which we are asked to sequence jobs with setup
times on a single machine such that the makespan is minimized. This problem is
equivalent to TSP. To see this, consider the following mapping between the two
problems, bearing in mind that in a problem instance of TSP C denotes the set of
cities and d;; the distance from city i to j. Let the set of jobs be given by C — {1}, let
s;j = d;;j for all jobs i, j, and let the processing requirements of the jobs be arbitrary.
Furthermore, take so; = dy; and sj9 = d;; for each job i. Then the makespan of a
schedule is equal to the total processing requirement plus the length of the tour that
starts at city 1 and visits the other n — 1 cities in the order in which the corresponding
jobs are processed on the single processor.

Insertion, move, and swap. For many machine scheduling problems, such as
15i|Cmax, it holds that in an optimal schedule a machine starts processing at time
zero and it does not contain idle time between two successive jobs (operations),
where setup times are not counted as idle time. In that case a solution can be repre-
sented by m sequences of jobs that give the order in which the jobs are processed on
the machines. For P||Cnax an even simpler representation suffices, as the order in
which the jobs are processed on the machines is irrelevant. We are only interested in
a partition of the jobs that specifies which jobs are processed by the same machine.
As an optimal schedule for JOB SHOP SCHEDULING may contain idle time, it is less
trivial to apply local search to this problem. In Chapter 4 we discuss how to tackle
JOB SHOP SCHEDULING with local search.

If a solution is defined by m sequences of jobs, then we can use the insertion
as well as the swap neighborhood function. In the insertion neighborhood function,
neighbors are generated by deleting a job from a sequence and inserting it either
at another position in the same sequence or in the sequence of another machine.
The swap neighborhood function generates neighbors by swapping two arbitrary
jobs that may or may not be in the same sequence. Both neighborhood functions
can also be used if a solution is defined by a partition of the jobs in m subsets.
In that case the insertion neighborhood function is called the move neighborhood
function. As the swap neighborhood function does not change the number of jobs
that are assigned to a machine, it has the unfavorable behavior that if one starts
with a solution in which no jobs are assigned to a machine, the machine remains
unused. Therefore, the swap neighborhood of a solution is often extended with its
insertion (move) neighborhood. Note that the insertion neighbors of a solution of
1|s,'j|Cmax are the same as the node-insertion neighbors of the corresponding TSP
problem instance, except that city # is not selected for a node insertion.
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Consider a machine scheduling problem, for instance P||Cpax, in which we are
asked to schedule multiple machines and in which it is our objective to minimize the
makespan. When, in choosing the cost function, we simply stick to the makespan
of the schedule, we get a poor performance of iterative improvement, as a schedule
in which multiple machines have the same makespan is locally optimal even though
other machines may still be empty. To overcome this problem, we can resort to the
following (slightly) different cost function. Let a critical machine be defined as a
machine that does not finish before Cy,x. Then, we redefine the cost function, such
that it returns two values, namely the makespan of the schedule and the number
of critical machines. A schedule S has lower cost than schedule S’ if the cost of
S is lexicographically smaller than the cost of §’, where we take the makespan as
the first objective and the number of critical machines as the second objective. In
Section 2.4 we present another example in which it is effective to slightly adapt the
cost function.

2.3 Steiner Tree Problem in Graphs

For TSP we presented neighborhood functions that are based on the obvious solu-
tion space containing all tours of n cities and we used the cost function that simply
assigns to a tour its length. For MULTIPROCESSOR SCHEDULING we indicated that
it may be useful to resort to a non-obvious cost function. It is often also useful to
switch to a non-obvious solution space. Consider, for instance, the modified version
of TSP in which it need no longer be possible to travel from each city i to each other
city j. Finding a starting solution then becomes more complicated. In general, it
is even NP-hard because it corresponds to finding a Hamiltonian cycle in a graph.
Furthermore, the k-change neighborhood size can be much smaller than for standard
TSP, which has a negative effect on the performance of local search algorithms. A
possible remedy to these problems is to enlarge the solution space with infeasible
solutions. More specifically, we can add the infeasible tours containing one or more
non-existing arcs. However, we have to be careful that the better solutions are fea-
sible. This can be realized by penalizing each non-existing arc in a tour, i.e., by
defining the cost of a tour as the total distance of the existing arcs plus the number
of non-existing arcs times a given large value.

In this section we define a neighborhood function for STEINER TREE PROBLEM
IN GRAPHS (STG). This illustrates another general approach in which we switch to a
non-obvious solution space. The common idea behind the approach is the use of an
indirect representation of a solution. It may be the case, such as for STG, that once
we know some features of a solution it is easy to construct the best solution with
these features. In that case, we can use these features as an indirect representation
of a solution and we can reduce the solution space by switching from the set of all
solutions to the set of all relevant feature values.

Definition 2.4 [STEINER TREE PROBLEM IN GRAPHS (STG)]. Given is an edge-weighted
graph G = (V,E) with a weight w(e) € N for each ¢ € E. The node set V is parti-
tioned into two sets R and U. Set R contains the special nodes and U the Steiner
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Figure 2.9. (a) Graph with four special nodes (boxes) and two Steiner nodes (cir-
cles). (b) Minimum spanning tree on the special nodes. (c) Optimal Steiner tree.

nodes. A Steiner tree of G is a subtree T = (Vr,Er) of G that includes all special
nodes, i.e., R C Vy C V. The problem is to find a Steiner tree T = (Vy,Er) of G
with minimum weight w(T') = ¥ ,cg, w(e). O

Example 2.4. Consider the graph given in Figure 2.9. The corners of the square are
the four special nodes, and the two nodes inside the square are the Steiner nodes.
The weight of an edge is given by the Euclidean distance between the two nodes it
connects, where the square is assumed to have sides of length eight.

At first sight, it may seem that the optimal Steiner tree is given by the minimum
spanning tree on the set R of special nodes. However, the weight of this tree is 24,
whereas the minimum spanning tree on all nodes is only 22, which is smaller. O

Insertion. Several polynomial-time algorithms exist for deriving a spanning tree of
minimum weight for a given edge-weighted graph G = (V, E). A popular algorithm
for deriving such a tree, called a minimum spanning tree, works as follows. It starts
with the tree T that contains a single arbitrary node from V. Next, it recursively
adds to T a shortest edge of which one node is already contained in 7 and one node
is not; see Figure 2.10. The algorithm can be implemented such that it computes a
minimum spanning tree in O(|V|?) time.

The problem formulation of STG suggests that we define the solution space S as
the set of all Steiner trees in G and define the cost function as w. However, we can
use the set of Steiner nodes in a Steiner tree as an indirect solution representation.
Once we are given a set A C U of Steiner nodes, we can use the minimum spanning
tree algorithm of Figure 2.10 on the subgraph of G induced by A UR to derive an
optimal Steiner tree MST(A) containing exactly these Steiner nodes and all special
nodes.

Now we can apply local search to the solution space 2V containing all subsets
A C U of Steiner nodes and the cost function that defines the cost of a set A € 2V
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algorithm Minimum Spanning Tree

begin
Vr :={v} for some v € V;
ET = 0;
while V7 # V do
begin
determine {V',v} € Vr x V that minimizes w({V',v});
Vi =Vru {V};
Er :=ErU{V,v};
end
end;

Figure 2.10. An algorithm for deriving a minimum spanning tree T = (Vr,E7) of
a graph G = (V,E). The algorithm is used for STG to derive a solution from an
indirect representation.

as the weight of the Steiner tree MST(A). Obviously, an optimal solution to this
problem gives an optimal solution to the original problem. This is important as it
means that we are still tackling the same problem. For a neighborhood function
we can use the insertion neighborhood function which is defined as follows. The
neighbors of a set A are the sets obtained from A by adding or removing a Steiner
node, i.e., by inserting a Steiner node in either A or U \ A. Figure 2.11 gives the
iterative improvement algorithm for the insertion neighborhood function.

2.4 Graph Coloring

In 1852, the student Francis Guthrie informed his brother Frederick that he had been
considering the problem of coloring the countries of a map in such a way that no
two neighboring countries have the same color and such that the number of colors
used is minimal. He pointed out that four colors seemed to be sufficient to do the
job, and he wondered if this was generally true. Despite its apparent simplicity, it
took mathematicians more than a century to settle this appealing problem. Finally,
after many failed attempts, Appel and Haken proved in 1976 that this conjecture
is indeed true. However, this does not end the fascinating quest for a proof of the
‘four color theorem’. As the proof of Appel and Haken makes use of a computer, it
is hidden in a black box and difficult to verify by humans. For some sceptics, this
means it is not fully acceptable as a watertight proof.

The map coloring problem described can be modeled as a graph problem in the
following way. For a given map M, we define a graph G such that every region of
M corresponds to a node in G and the graph contains an edge {i, j} if and only if
i and j are adjacent regions in M. It can be verified that the resulting graph G is
planar. Now the map coloring problem corresponds to coloring the nodes of G with
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algorithm Iterative Improvement for STG

begin
initialize A C U,
Ty := MST(A);
repeat
generate an A’ € N(A);
Ty :=MST(A');
if w(Ty) < w(Ty) then A :=A’;
until w(7y) > w(Ty) forall A’ € N(A);
end;

Figure 2.11. Iterative improvement algorithm for STG with the insertion neighbor-
hood function N(A) = {AU{v} | ve U\A}U{A\ {v} | v€ A}. MST(A) denotes
the minimum spanning tree derived by the algorithm of Figure 2.10 for the subgraph
of G that is induced by A UR.

a minimum number of colors, such that no two nodes that are connected by an edge
have the same color. The latter problem is called MINIMUM GRAPH COLORING. It
can also be verified that for an arbitrary planar graph MINIMUM GRAPH COLORING
can be modeled as a map coloring problem. This implies that the two problems
are equivalent. In its general form, MINIMUM GRAPH COLORING is formalized as
follows.

Definition 2.5 [MINIMUM GRAPH COLORING (MGC)]. Given is a graph G = (V,E).
Find a coloring of the nodes, such that no two adjacent nodes have the same color
and the number of colors used is minimal, i.e., find a partition Vi,V,,..., Vi of V
into a minimum number k of independent sets. a

For planar graphs we are well capable of finding high-quality solutions. We can
decide in linear time whether a coloring using one or two colors exists and, if this is
the case, construct one. Furthermore, it is also possible to construct a five-coloring
in linear time. According to the four color theorem, such a coloring cannot be
optimal. Nevertheless, a quadratic-time algorithm exists that constructs a coloring
using only four colors. The question whether or not this coloring can be improved
to three is NP-complete.

For general graphs, MGC is much harder to approximate. It has been shown that
it is very unlikely that a polynomial-time algorithm exists with a performance ratio
better than |V|!~¢ for any constant € > 0. Note that the naive algorithm that assigns
a different color to each node has a performance ratio of exactly |V|.

In 1879, Kempe published the first ‘proof’ of the four color conjecture. Al-
though eleven years later Heawood showed that Kempe’s proof was wrong, the
proof introduces Kempe chains, which are still frequently used in the context of
MGC. Before we explain a Kempe chain, consider the colored graph given in Fig-
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Figure 2.12. (a) Feasible coloring of a graph with the colors white, black, and gray.
(b) Infeasible coloring obtained by changing the color of node 1 from black to white.
(c,d) Transformation of infeasible coloring (b) to a feasible coloring.

ure 2.12(a) and suppose that we recolor node 1 from black to white. We then get an
infeasible coloring as both end points in edges {1,2} and {1,4} are colored white;
see Figure 2.12(b). To repair this, we assign nodes 2 and 4 the original color of
node 1, which is black. Again, this results in an improper coloring as the end points
of edge {2,3} are both black. As before, we undo this violation by assigning node
3 the original color of node 2, which is white. We now end up with the feasible
coloring depicted in Figure 2.12(d).

The algorithm presented for constructing a feasible coloring after recoloring
one of the nodes can be formalized as follows. Let G be a properly colored graph,
and suppose that we want to recolor node v from color ¢ to color ¢’ with ¢ # ¢
Furthermore, let G’ be the graph obtained from G by removing all nodes that do not
have the color ¢ or ¢. The component in subgraph G’ containing v is called a Kempe
chain. For the coloring given in Figure 2.12(a), Figure 2.13 depicts this chain for the
case that we want to color node 1 white. To construct a new coloring we perform a
Kempe chain interchange. This means that we swap the colors in the chain: nodes
with the color ¢ are colored ¢’ and vice versa. It can be verified that the resulting
coloring is again feasible. Note that the Kempe chain interchange on the Kempe
chain of Figure 2.13 indeed results in the feasible coloring given in Figure 2.12(d).

The discussion above gives rise to the neighborhood function in which a coloring
C’ is a neighbor of coloring C if C’ can be obtained from C by performing a Kempe
chain interchange. Furthermore, to construct a starting solution, we can use the
following greedy algorithm. Let 7 be an arbitrary ordering of the nodes of the
graph, and let the colors with which we want to color the graph be numbered from
one onwards. Then the greedy algorithm colors the nodes in the order specified by
7, such that each node is assigned the minimum color that is not already assigned to
any of its neighbors. Obviously, the algorithm uses at most A+ 1 colors, where A is
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Figure 2.13. Kempe chain on which we perform a Kempe chain interchange in

case we want to change the color of node 1 from black to white in the coloring of
Figure 2.12(a).

the maximum degree of any node in the graph. Note that the algorithm can derive
different colorings by varying 7. This is a welcome feature of the algorithm as it
enables us to explore different regions of the solution space by performing multiple
runs of iterative improvement. We return to this in Chapter 7.

We now arrive at the following implementation of iterative improvement or any
other local search algorithm. We use the greedy algorithm for constructing an initial
solution using at most A+ 1 colors, we let the solution space contain all feasible
colorings using at most A+ 1 colors, and we apply the Kempe chain neighborhood
function presented. What remains is to choose a cost function. A straightforward
option is to define the cost of a coloring as the number of colors used. However,
this is not a good choice. Contrary to the exponential size solution space, the cost
function has only a very small range since it can take at most A + 1 values, namely
1,2,...,A+ 1. This gives an indication that the solution space will contain large
plateaus, which will have a negative effect on the performance of local search algo-
rithms. The fact that we have large plateaus can also be seen by realizing that we
cannot improve the cost of a coloring by a small number of moves in the case that
each color is used several times and in different parts of the graph.

To circumvent this problem we can define the cost of a coloring as a A+ 1 tuple
(c1,¢2,...,ca41), Where ¢; gives the number of nodes with color i. Furthermore, we
consider the cost f(C) of a coloring C to be smaller than the cost f(C’) of a coloring
C' if it is lexicographically smaller. Hence, the cost function f, which clearly has a
much larger range than the original cost function, stimulates the use of colors with
a high index number. Note that if a locally optimal solution uses k colors, then it
uses each of the largest k colors and none of the first A — k+ 1 colors. Obviously, a
globally optimal coloring for this cost function uses a minimum number of colors,
which means that it is also an optimal coloring for the original cost function. Hence,
by changing the cost function we still solve the same problem, i.e., MGC.

2.5 Uniform Graph Partitioning

The effectiveness of a local search algorithm strongly depends on the risk of getting
stuck in a poor local optimum. For many problems, this risk can be reduced by
applying an approach called variable-depth search. In this section we illustrate this
approach for UNIFORM GRAPH PARTITIONING.
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Definition 2.6 [UNIFORM GRAPH PARTITIONING (UGP)]. Given is an edge-weighted
graph G = (V,E) with |V| = 2n and a weight w(e) € N for each edge ¢ € E. Find
a partition of V into two subsets V| and V, with |V;| = |V2| = n, such that the sum
of the weights of the edges that have one endpoint in V; and one endpoint in V; is
minimal, i.e., such that

c(Vi,Va) = Y wle)

e€EN(VyxV,)

is minimal. O

This minimization problem is equivalent to the maximization variant of the problem,
as can be seen as follows. Let G = (V, E) be a weighted graph with maximum weight
W = max.cg w(e), and let K be the complete graph on the same node set V, in which
the weight of an edge e is given by W —w(e) if e € E and by W otherwise. The cost
of a partition (Vi,V,) in one variant of the problem is then equivalent to n”W minus
the cost of this partition in the other variant. This implies that both problems are
indeed equivalent.

An obvious neighborhood function for UGP is the swap neighborhood function
in which the neighbors of a partition (Vi, V) are obtained by interchanging a node
from V| with a node from V,. To obtain more powerful neighborhood functions, one
can generalize the swap neighborhood function to the k-swap neighborhood func-
tion in a similar way as we generalized 2-change to k-change for TSP. This means
that for any given k > 1 the k-swap neighbors of a partition (V;,V,) are obtained by
interchanging at most k nodes from V; with just as many nodes from V,. The size
of the k-swap neighborhood is given by 3%, (';)2 = O(n?), where (’1')2 gives the
number of alternatives for interchanging i nodes in V| with i nodes in V,. It follows
that while the quality of the local optima of the k-swap neighborhood function in-
creases with k, this is at the expense of a considerable increase in the neighborhood
size and, consequently, also in the running time of iterative improvement.

Variable-depth search gives an alternative, effective approach for making the
swap neighborhood function more powerful. The main idea is that we allow multiple
swaps to be performed simultaneously. We call the resulting neighborhood function
Kernighan-Lin, after its two inventors. For each i with 1 <i < n, the Kernighan-Lin
neighborhood of a partition (V;,V;) contains exactly one partition that is obtained
from (V},V2) by exchanging i nodes from V; with i nodes from V;. This is a drastic
reduction in comparison with the k-swap neighborhood, which contains for each i
with 1 <i <k all (’;)2 partitions that can be obtained by exchanging i nodes from
V1 with i nodes from V5.

The n Kernighan-Lin neighbors of a partition (V1,V2), written as (Vl('), 2(')) for
1 <i < n, can be determined in 7 steps as follows. In Step i we derive partition
(Vl(’), 2(')) by performing the best possible swap on (V;,V,) if i = 1 and on the par-
tition (V'~", v{™1)) derived in the previous step if 2 < i < n. We are not allowed
to select a node that has already been selected before for a swap. By the best possi-

ble swap we mean the swap of the nodes from Vl(i_l) and Vz(i_l) that produces the
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maximum decrease in cost or, if such a swap does not exist, a minimum increase
in cost. In the case of a tie, a tie-breaking rule is used to choose a unique pair of
nodes that is swapped. The neighborhood consists of n partitions because, after n
swaps, all nodes of the graph have been selected for an exchange and, by definition,
each node may only be selected once. In other words, the neighbors are obtained by
performing iterative improvement using the best-improvement pivoting rule and the
swap neighborhood function. However, unlike the standard iterative improvement
algorithm, we have the additional constraint that each node may only be selected
once for a swap and that we accept a best cost-increasing neighbor if we are in a
local optimum.

Consider iterative improvement with the Kernighan-Lin neighborhood function.
An iteration of the algorithm can be formalized as follows. Let gvl,vz(Vl,Vz) be
the change in cost resulting from swapping nodes v; € V| and v, € V; in a given
partition (V1,V2). Then the first neighbor of a partition (Vi,V2), which we denoted
by (Vl(l), 2(1)), is obtained by swapping the nodes vgl) and vgl), where vgl) and vgl)
minimize gy, v, (v\"),v{"), and the ith neighbor (V") V")) with 2 < i < n is obtained
by swapping the nodes v51)7v§2)7 .. ,v%’) and vgl),vgz), . ,vé’), where v%’) and vg)
Y1) i1 (vgl),vg)) over all vﬁ’) € Vl(’_l) NV; and vg) € Vz(’_l) NV,. Now
the difference in cost between partition (V1,V2) and the ith neighbor can be defined
as

minimize g

G(i) = l_zzlgvl(j—w’vzu—l) 0 ).

Hence, we find that iterative improvement stops in the considered iteration if
G(i) > 0 for all 1 < i< n. Otherwise, it swaps the nodes vgl),vgz),...,vgl) and

vgl),vgz), ... ,vg), where i minimizes G(i) if the best-improvement pivoting rule is

used and where i is the first value for which G(i) < 0 if the first-improvement piv-
oting rule is used.

Since the Kernighan-Lin neighborhood of a solution has only size n and since
each neighbor can be determined in O(n?) time, the Kernighan-Lin neighborhood
function is much more manageable than the k-swap neighborhood function for
k > 4. Furthermore, like k-swap, the Kernighan-Lin neighborhood function is more
powerful than the swap neighborhood function. To substantiate this, observe that a
partition (Vy,V2) is swap optimal if and only if the first neighbor in its Kernighan-Lin
neighborhood has higher cost. In addition, we observe that, unlike the neighborhood
functions we discussed in the previous sections, the Kernighan-Lin neighborhood
function need not be symmetric.

Example 2.5. Consider Figure 2.14(a), which depicts a weighted graph G = (V,E)
consisting of two components C; = {1,2,3,4,5,6} and C; = {7,8,9,10,11,12} of
six nodes each and a partition (V;,V3) with cost ¢(V,V,) = 4. Obviously, this par-
tition is not optimal as the two components C; and C, define a partition with cost
zero. However, it is locally optimal with respect to the swap neighborhood function:
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Figure 2.14. (a) Partition of the nodes of a graph into the sets V; = {1,2,3,7,8,9}
and V, = {4,5,6,10,11,12}. The numbers along the edges define their weights.
(b)-(g) Partitions in the Kernighan-Lin neighborhood of (V;,V3).
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Figure 2.15. (a) The six neighbors of partition (V;,V>) depicted in Figure 2.14(a).
The numbers inside a node indicate the cost of the solutions. (b) The function G(i),
which gives the difference in cost between partition (V;,V>) and its ith neighbor.

the best possible partition that can be obtained from (V;,V3) by performing a swap
is the one resulting from swapping nodes four and nine and the cost of this partition
is 6, which is larger than ¢(V,V,2) = 4. Figure 2.14(b) shows this partition, which
is the first partition (Vl(l), 2(1)) in the neighborhood of (V1,V,2). When defining the
other neighbors, the nodes four and nine are no longer candidates for performing a
swap. In Figure 2.14 this is indicated by shading these nodes.

In Figure 2.14(c)-(g) we also define the other n — 1 = 5 neighbors. Note that the

last partition (Vl(ﬁ), 2(6)) is equivalent to (Vi,V2), except that the order of the subsets
has been changed. This is generally the case because in the last partition of V all
nodes have been selected for a swap exactly once.

The graph in Figure 2.15(a) shows the n = 6 neighbors of (Vi,V,) with their
cost, and Figure 2.15(b) depicts G(i). It follows that if iterative improvement is
applied using the Kernighan-Lin neighborhood function, then the optimal partition
(V1(3) , V2(3)) given in Figure 2.14(d) is selected as the neighbor of partition (V;,V2).
This holds for the first-improvement as well as the best-improvement pivoting rule.

O

With the described application of variable-depth search to UGP in mind, it is now
easy to describe the approach in its general form. As ingredients, variable-depth
search needs a neighborhood function N and some kind of blocking rule. It then
defines the neighborhood function N’, such that N’(s) contains exactly those neigh-
bors of solution s that are reached from s by applying iterative improvement with the
best-improvement pivoting rule, where the iterative improvement is only allowed to
make moves that are not prohibited by the blocking rule and where a best non-
improving, admissible move is chosen in the case that all admissible moves lead to
neighbors that are worse than the current solution.
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2.6 *Stable Configuration in Hopfield Networks

In this section we show how the problem of finding a locally optimal solution arises
in neural computing. A Hopfield network is an example of a neural network. An
interesting type of Hopfield network can be specified by an edge-weighted simple
graph G = (V,E). The weight w(e) of an edge ¢ € E may be either a positive or
a negative integer. The same holds for the threshold value T, that is assigned to
each node v € V. A configuration f assigns to each node v the value f(v) = —1 or
f(v) = 1. In the former case, node v is considered to be in the off-state, while in the
latter case it is in the on-state. We call node v stable in a configuration f if we have

fOy=1= 3 w{uy)fw)>T,

{u,v}eE
and
f)==1= % w({uy})f) <T.
{u,v}€E
If all nodes are stable in a given configuration f, then f is said to be stable.

An interesting question is whether a stable configuration always exists and, if
this is the case, how to find one. To answer these questions, consider the cost func-
tion that assigns to a configuration f the cost

Y wlu, )= X Tf (). 2.2)
{u,v}€E veV
Next, suppose that we change the state of node v. Then calculus yields that the
resulting change in cost is given by

Av=(1=2f(M)( Y wl{uv})f(w)-T).
{u,v}eE
We note that in ¥, g w({u,v})f(u) variable v is fixed, which is not the case in
the sum Y, 1epw({u,v})f(u)f(v) in (2.2). Using the definition of A,, we can
derive that changing the state of an unstable node v results in a cost increase. To
see this, first consider the case where f(v) = —1. We then have 1 —2f(v) =3
and, as v is unstable, also X, ,yeg w({u,v})f(u) > T,. This clearly implies A, > 0.
Similarly, if f(v) = 1 holds for unstable node v, then we have 1 —2f(v) = —1 and
Yuvyee w{u,v}) f(u) < T,, which again yields A, > 0. Hence, flipping the state
of an unstable node does indeed result in an increase in cost. By similar arguments,
it can be shown that flipping the state of a stable node does not improve the cost
of a configuration, i.e., a cost increase can only be obtained by flipping the state of
an unstable node. As a result, we obtain that a configuration is stable if and only if
it is a locally optimal solution with respect to maximizing the cost function given
by (2.2) and the neighborhood function that flips the state of a node. This means
that we can find a stable configuration for the type of Hopfield network we consider
by applying iterative improvement. This answers the questions postulated above
as to whether stable configurations exist and how to find one. Note that it follows
from our discussion that this application of iterative improvement corresponds to
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repeatedly flipping the state of unstable nodes in the Hopfield network, which is the
algorithm that is traditionally applied in Hopfield networks.

2.7 Bibliographical Notes

The first use of a local search algorithm for tackling a combinatorial optimization
problem dates back to the 1950s. At that time, 2-Opt was introduced by Flood
[1956] and Croes [1958] and 3-Opt by Bock [1958]. The real effectiveness of
k-Opt was shown by Lin [1965]. Lin applies k-Opt to several problem instances
for k = 2,3, and 4. The experiments show that 3-Opt yields a good trade-off be-
tween running time and solution quality. For 2-Opt the shorter running time is
at the expense of a considerable loss in quality, while for 4-Opt the increase in
quality is only minor compared to the increase in running time. Nicholson [1971]
extend the concept of exchange strategies to a more general class of permutation
problems, including network layout design, scheduling, vehicle routing, and cutting
stock problems. The Or neighborhood function for TSP proposed in Section 2.1 was
introduced by Or [1976]. The book published by Lawler, Lenstra, Rinnooy Kan
& Shmoys [1985] can be viewed as the classical textbook on TSP. Reinelt [1994]
published a book emphasizing the many computational approaches to the problem,
and Johnson & McGeoch [1997] wrote a chapter on the application of local search
to TSP. For a more recent book on TSP, we refer to Gutin & Punnen [2002].

In Section 2.2, we presented a three-field classification o]y for specifying ma-
chine scheduling problems. This notation is introduced by Graham, Lawler, Lenstra
& Rinnooy Kan [1979]. For a more detailed discussion of the different alternatives
we have for the machine environment, job characteristics, and optimality criterion,
we refer to Pinedo [1995] and Brucker [1995].

The insertion neighborhood function we discussed for STG is proposed by Os-
borne & Gillett [1991]. Furthermore, the algorithm we presented for computing a
minimum spanning tree is due to Prim [1957] and Dijkstra [1959]. Papadimitriou
& Steiglitz [1982] present a nice discussion of the problem of finding a minimum
spanning tree.

Regarding the computational complexity of STG, Garey, Graham & Johnson
[1977] prove that even the Euclidean variant is strongly NP-hard. In this variant,
called EUCLIDEAN STEINER TREE, the nodes represent points in a plane and the
weight of an edge {i, j} is defined as the (discretized) Euclidean distance between
points i and j. Furthermore, Bern & Plassmann [1989] prove that STG is APX-
complete, which implies that STG € APX — PTAS provided that P # NP. Robins &
Zelikovsky [2000] derive an approximation algorithm with a performance ratio of
1+ 1’;3. For EUCLIDEAN STEINER TREE, on the other hand, Arora [1998] proves
that it does admit a PTAS, which implies that, unless P = NP, this strongly NP-hard
problem belongs to the class PTAS — FPTAS; see Figure 2.16.

In Section 2.4 we started by giving a short history of MGC. A more elaborate
history is given by Saaty & Kainen [1977]. Furthermore, we refer to Gibbons [1985]
for a more detailed discussion of the indicated equivalence between the map color-
ing problem and MINIMUM GRAPH COLORING ON PLANAR GRAPHS. We note that
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MINIMUM GRAPH COLORING

Apx NPO ON PLANAR GRAPHS

MINIMUM GRAPH COLORING

PTAS
@) FPTAS

STEINER TREE PROBLEM
IN GRAPHS

EUCLIDEAN STEINER TREE

Figure 2.16. Position of some problems in the existing approximability classes in
the case that P # NP. The approximability classes are discussed in Appendix B.

this equivalence was already noticed by Kempe [1879].

Appel and Haken proved the famous four color theorem; see Appel & Haken
[1977], Appel, Haken & Koch [1977], and Appel & Haken [1989]. Furthermore,
an algorithm for constructing a coloring for a planar graph using four colors is pre-
sented by Robertson, Sanders, Seymour & Thomas [1997]. The running time of this
algorithm is quadratic in |V|. As it is easy to derive a linear-time algorithm for con-
structing a coloring using only one or two colors if such a coloring exists, the latter
result implies that the problem of coloring planar graphs allows a polynomial-time
g-approximation algorithm. However, since an approximation algorithm with a bet-
ter performance ratio would be able to distinguish in polynomial time 3-colorable
graphs from 4-colorable graphs and since Garey, Johnson & Stockmeyer [1976]
prove that deciding whether a planar graph is 3-colorable is NP-complete, this is the
best we can hope for. Hence, if P # NP, then the problem is in the approximability
class APX — PTAS. This is visualized in Figure 2.16. For planar graphs, we also
note that a linear-time algorithm for coloring the graph with five colors is given by
Chiba, Nishizeki & Saito [1981].

Next, consider MGC for general graphs. Halldérsson [1993] proves the exis-

2
l(()iz)ﬁ/‘?;? )-approximation algorithm. Further-

more, Bellare, Goldreich & Sudan [1998] prove that, unless P = NP, no polynomial-
time algorithm exists with a performance bound of |V|1/ 7. As aresult, MGC is in
NPO — APX provided that P # NP. Feige & Kilian [1998] strengthen the non-
approximability result. They prove that no polynomial-time algorithm exists with
a performance bound of |V|!~¢ for any constant € > 0. However, this result holds
under the condition that ZPP # NP instead of the weaker condition P # NP, where
ZPP (Zero-error Probabilistic Polynomial time) is the class of languages for which
a randomized algorithm exists that decides in polynomial expected time whether a
given string is in the language and is guaranteed to give the correct answer. For
more details on the class ZPP, we refer to Papadimitriou [1994].

We conclude our discussion of MGC by restating that Kempe chains are intro-
duced in the ‘proof” of the four color theorem by Kempe [1879] and that an error in
this proof was discovered by Heawood [1890].

tence of a polynomial-time (’)(|V|(
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In Section 2.5 we discuss UGP. Garey, Johnson & Stockmeyer [1976] prove
that the problem we obtain when dropping the constraint |Vi| = [V2| = n in the
maximization variant of UGP is strongly NP-hard. It can easily be shown that this
result remains valid if we add the constraint |V;| = [V2| = n. Since UGP is equivalent
to its maximization problem, as we have indicated in Section 2.5, this yields that
UGP is also strongly NP-hard.

As indicated by its name, the Kernighan-Lin neighborhood function presented
for UGP has been introduced by Kernighan & Lin [1970]. Although many dif-
ferent problems have been tackled by neighborhood functions based on variable-
depth search, we would like to draw attention to the paper of Lin & Kernighan
[1973]. They present a local search algorithm for TSP, later to be known as the Lin-
Kernighan algorithm, that uses the approach and for which Johnson & McGeoch
[1997] report that it was recognized as the world champion heuristic algorithm until
about 1990.

In Section 2.6 we discuss a restricted type of Hopfield network. In its general
form, the weighted graph defining a Hopfield network may be directed and it may
contain loops. Hopfield networks have been introduced by Hopfield [1982], who
also proved the result of Section 2.6, i.e., that finding a stable configuration corre-
sponds to finding a local optimum with respect to the cost function given by (2.2)
and the neighborhood function that flips the state of nodes. For more details on
Hopfield networks we refer to Wasserman [1989].

2.8 Exercises

1. Consider MULTIPROCESSOR SCHEDULING, which can be written as P||Cmax.-

a) How large is the solution space, i.e., how many partitions exist of n jobs
over m machines?

b) How large is the move neighborhood size of a solution?

c) Is the move neighborhood function exact? Substantiate your answer by
means of a proof or a counterexample.

2. Show for TSP that the neighborhood size of node insertion is n(n —3) for any
n>4.

3. Consider the following problem.

Definition 2.7 [KNAPSACK PROBLEM]. Given are a set A of items, a bound B € N,
and for each item i € A a size s; € Nt and a value v; € N*. A subset A’ C A is
said to be feasible if its total size is at most B, i.e., if Y,;c4r s; < B. Find a feasible
subset A’ C A with maximum value Y4 v;. m|

If we want to tackle this problem by local search, then we can use the swap
neighborhood function in which a subset A” is a neighbor of a subset A" if and
only if it can be obtained by replacing an item in A’ with an item that is not in A’.
Alternatively, we can use the move neighborhood function in which a subset A”
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(a) ©)

Figure 2.17. (a) Problem instance of EUCLIDEAN TSP with 16 cities. (b)-(e) Four
tours for this problem instance.

is a neighbor of a subset A’ if and only if it can be obtained either by removing
an item from A’ or by adding an item to it. Both neighborhood functions are
defined on the solution space containing all feasible subsets.

a) Give a major drawback of the swap neighborhood function.

Consider the problem instance with A = {1,2,3}, B = 3, (s1,s2,53) = (2,1,2),
and (vl,V2,V3) = (1,2,3).

b) Give the move neighborhood graph and move transition graph for this prob-
lem instance.

¢) Give the diameter of the neighborhood graph and the potential of the tran-
sition graph.

d) Let a start solution be chosen uniformly at random. Determine for each
possible solution the probability that it occurs as the final solution when
iterative improvement is applied with the best-improvement pivoting rule
and the move neighborhood function.

4. Consider the problem instance of EUCLIDEAN TSP depicted in Figure 2.17(a).
The problem instance consists of 16 cities, and the distance between two neigh-
boring cities is one, regardless of whether they are on the same horizontal line or
on the same vertical line. Determine for the four tours depicted in Figures 2.17
whether they are locally optimal with respect to the 2-change neighborhood
function and with respect to the node-insertion neighborhood function.

5. Consider the following practical problem. Given are n data blocks, which need
to be fetched from m multi-zone hard disks. Each data block i with 1 <i<n is
stored on all m hard disks. The time required for reading block i from disk j with
1 < j <mis given by p;;. This time need not be constant due to the multi-zone
character of the hard disks. If a disk reads blocks i and i’ successively, then an
overhead of s time units is required to move the reading head from the end of
block i to the beginning of block i’. Now we have to determine which data block
to read from which disk, such that the time that all disks are finished is as early
as possible. For this it is allowed that a data block is split into several parts,
where each part is read from a different disk (notice that in this case for each
part a switch time s is required).

Write this problem in the machine scheduling notation presented in Section 2.2.
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. Figure 2.10 gives an algorithm for deriving a minimum spanning tree of a graph

G = (V,E) in O(|V|?) time. Prove that this time complexity is asymptotically
optimal when expressed in |V| (and not, for example, in |E|). In other words,
prove that any algorithm for deriving a minimum spanning tree has a time com-
plexity of Q(|V|?).

. Consider UGP. In Section 2.5 we claimed that each Kernighan-Lin neighbor of

a partition (V1,V2) can be derived in O(n?) time. As in the same section we
indicated that the size of the swap neighborhood is ©(n?), this claim is true if
we can determine the change in cost resulting from swapping any pair of nodes
in constant time.

a) Prove that we can determine the cost effect of swapping any two nodes in
constant time if we keep for each node v € V;, i € {1,2}, its external cost

E(v) = > w({v,v'})
{vV'}eEN(V|x V)
and its internal cost
I(v) = > w({v,v'}).
{wVIeEN(VixVy)

b) Show that after performing a swap we can update the external and internal
cost value of any node in constant time.

. Design two variable-depth search neighborhood functions for MULTIPROCES-

SOR SCHEDULING, one based on the move neighborhood function and one based
on the swap neighborhood function.

A regular graph is a graph in which all nodes have the same degree. Hence, like
the term isotropic, which we defined in Definition 2.3, the term regular indicates
that a graph is well structured. Prove that an isotropic graph is always regular
and that the reverse need not be true.



Indirect Solution Representations

We can distinguish two types of neighborhood functions: those that are defined on
representations that directly define a solution and those that are defined on repre-
sentations that indirectly define a solution. Except for the insertion neighborhood
function proposed for STG, all examples given in Chapter 2 are based on direct
representations.

Indirect solution representations are typically used when we can identify a fea-
ture for all the solutions, such that for a given value of this feature a best corre-
sponding solution can be derived in polynomial time. To make this more precise,
let f be such a feature and let equivalence relation ~ ¢ on the solution space be de-
fined by s ~¢ s if and only if solutions s and s’ have the same value for feature
f. The equivalence classes induced by ~ ¢ partition the solution space into disjoint
subsets. This gives rise to basing local search on the new solution space containing
all possible values of feature f, where a value of f represents a best solution in the
corresponding equivalence class. By the definition of f, the solution represented by
some value of f can be derived in polynomial time.

To illustrate the use of indirect solution representations, we discussed STG in
Section 2.3. For this problem we can define an equivalence relation ~ on the set of
Steiner trees by T ~ T' if and only if Steiner trees T and T’ contain the same Steiner
nodes. We can now use a subset A of the Steiner nodes as an indirect representation
of a best Steiner tree Ty in the corresponding equivalence class, i.e., of a best Steiner
tree Ty with the property that it contains all Steiner nodes in A and no other Steiner
nodes. We indicated that the tree Ty can be computed in polynomial time for a
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(a)

Figure 3.1. (a) Graph with four special nodes (boxes) and two Steiner nodes, 51 and
s2. (b) Four equivalence classes implied by equivalence relation ~, where T ~ T' if
and only if Steiner trees T and 7' contain the same Steiner nodes. A subset below
a class indicates the Steiner nodes that are contained in the Steiner trees of that
class. (c) Neighborhood graph implied by the insertion neighborhood function and
the solution space 205152} = {0, {s;},{s2},{s1,52}}. A solution represents a best
solution in the corresponding equivalence class.

given subset A as it corresponds to deriving a minimum spanning tree. As a possible
neighborhood function, we proposed the insertion neighborhood function in Sec-
tion 2.3. For the graph of Figure 3.1(a), which is the graph depicted in Figure 2.9,
Figure 3.1(b) gives the equivalence classes induced by ~. We have one equivalence
class with 4 solutions, two with 11 solutions, and one with 75 solutions. Hence, for
this toy example the solution space reduces from 101 solutions to only 4 solutions
when we use the indirect representation implied by ~. The neighborhood graph for
this example when using this indirect representation and the insertion neighborhood
function is depicted in Figure 3.1(c).

In this chapter we give examples showing the use of an indirect representa-
tion for three machine scheduling problems, namely R|| ¥ ;w;C;, 1||X; E; + T}, and
J||Cmax- All indirect representations are based on the approach described above,
in which each indirect solution representation corresponds to a best solution in an
equivalence class.

3.1 Sum of Weighted Completion Time on Unrelated Machines

The first machine scheduling problem we address is R|| ¥ ;w;C;. For this problem
we only have to consider schedules that do not contain idle time between jobs and in
which each machine starts processing at time zero. Hence, as a direct solution rep-
resentation we can use m sequences of jobs, where sequence i specifies which jobs
are to be processed by machine i and in what order. However, the solution space can
be reduced considerably by resorting to an indirect solution representation. The key
to this indirect representation is the observation that an optimal order to process a
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set of jobs on a single machine, say machine i, can be computed in O(nlogn) time
by putting the jobs in non-decreasing order of the value of the ratio p;j/wj. This
order is called the shortest weighted processing time (SWPT) order. The result is
proved in Theorem 3.1. We can now base a local search algorithm on the indirect
solution space containing all possible assignments of jobs to machines and on the
cost function that gives the cost 3 ;w;C; of an optimal schedule corresponding to
an assignment, which can be computed in O(nlogn) time. Possible neighborhood
functions are the move and swap neighborhood functions. Note that the equiva-
lence relation on which the indirect representation is based relates direct solution
representations that have the same assignment of the jobs to the machines.

Theorem 3.1. An optimal schedule for 1||X;w;C; is obtained by sequencing the
jobs in SWPT order.

Proof. We prove the theorem by contradiction. Hence, assume that we have an
optimal one-machine schedule S in which the jobs are not sequenced in SWPT or-
der. Since the jobs are not in SWPT order, two jobs j and j' exist, such that j’ is
the direct successor of job j in the schedule and p;/w; > pj/wj. Let S’ be the
schedule obtained by swapping these jobs. Swapping the jobs only affects the com-
pletion times of jobs j and j'. The completion time of job j increases by p; and
the completion time of job ;' decreases by p;. As a result, the cost of the schedule
increases by wipj —wpyp;. As pj/w; > py/wj implies w;py < wjp;, this cost
increase is smaller than zero. This implies that schedule S’ has a lower cost than S,
contradicting our assumption that S is optimal. ]

3.2 *Symmetric Earliness and Tardiness on a Single Machine

For the machine scheduling problem discussed above the main challenge was to
assign the jobs to the machines. Given the set of jobs that have to be processed by
a machine i, the problem of deriving an optimal schedule for machine i was easy
as it corresponds to sequencing the jobs in SWPT order with no idle time. We now
consider 1||¥; E; + T; in which each job has a due date d; and in which we are
asked to schedule the jobs on a single machine, such that the sum of earliness and
tardiness is minimal. Without loss of generality, we may assume that p; < d; holds
for each job j, as a problem instance with p; > d is equivalent to the same problem
instance with the due date of j replaced by p; and with a constant penalty of p; —d;
added to the cost function. For problem 1|[¥;E; + T}, determining an assignment
of the jobs to the machines is no longer an issue, as we only have one machine.
However, to determine a schedule for a single machine it no longer suffices to find
an ordering of the jobs. We also have to specify a starting time for each job as
it may be favorable to add idle time between two successive jobs. We present a
polynomial-time algorithm for determining an optimal schedule for a given order in
which the jobs have to be processed. This implies that we can tackle 1|| ¥, E; + T;
by performing local search on the solution space containing all permutations, i.e.,
orderings of the jobs. Obviously, the insertion and swap neighborhood function are
both candidates for use in the local search algorithm.
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Consider an arbitrary order in which the n jobs have to be processed. Without
loss of generality, we assume that the jobs are numbered, such that job j is the jth
job in this ordering. We present an algorithm that assigns a completion time C; to
each job j, such that the corresponding schedule is optimal. Note that deriving a
completion time C; for job j is equivalent to deriving its starting time G; because
C; =0+ p; as preemptions are not allowed. We first introduce some terminology.
A schedule consists of one or more blocks, which is a maximal sequence of jobs
that are scheduled contiguously. This means that the first job of a block is either
the first job in the schedule or it is preceded by idle time and, similarly, the last job
of a block is either the last job in the schedule or it is succeeded by idle time. The
scheduling algorithm schedules the jobs one at a time in increasing order. We define
S; as the schedule obtained after scheduling job i.

Let By,B>,...,B; be the blocks of a schedule S;. We partition the jobs of a
block B; into the two subsets Late(l) and Early(l). The former subset contains
the late jobs and the latter the early jobs. Formally, these two subsets are given by
Late(l) = {j € B;|C; >d;} and Early(l) = {j € B;|C; < d;}. Hence, the jobs from
Late(1) benefit from advancing block B; completely and the jobs from Early(l)
benefit from postponing the block. For example, the schedule of Figure 3.2(d)
consists of three blocks. The first block B; consists of job 1 € Early(1) and jobs
2,3 € Late(1), block B, contains job 4 € Early(2) and job 5 € Late(2), and block
B3 contains only job 6 € Early(3). For a block B;, we define Negyiy (1) and Nyu. (1) as
the number of jobs in Early(l) and Late(l), respectively. Furthermore, f(S) denotes
the cost 3; E; + T of schedule S.

We now present the scheduling algorithm, which we call Block Shifting. In the
first iteration, the algorithm schedules the first job, such that it meets its due date,
i.e., C; = d; see Figure 3.2(a). In iteration i with i > 2 the algorithm constructs
schedule S; from S;_; as follows. First of all, consider the case Ci_; + p; < d;.
In this case it is possible to let job i meet its due date without this affecting the
scheduling of the first i — 1 jobs as defined by S;_;. We make use of this possibility,
i.e., we schedule job i such that C; = d;. Note that if C;_; + p; < d;, then schedule S;
contains idle time between job i — 1 and i. Furthermore, we have f(S;) = f(Si—1).
An essential property of the algorithm will be that it satisfies the following invariant.

Invariant. For an arbitrary block B; we have that it either starts at time zero or
satisfies Niate(I) < Nearty(1).

Note that if block B; starts at time zero, then it is the first block in the schedule. Fur-
thermore, observe that the invariant implies that a schedule derived by the algorithm
is locally optimal with respect to advancing one of the blocks. This is true because
advancing a block B, for one time unit yields a cost change of Nige (1) — Nearty(1).
As a consequence of the proposed assignment of job i to S;_1, we find that Neg, (f)
is increased by one if job i is added to the last block B; of S;_; and that a new block
By41 is initiated with Njg (4 1) = 0 and Neayy(f + 1) = 1 otherwise. In both cases
the invariant is not violated.
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Figure 3.2. (a)-(c) First three iterations of the Block-Shifting algorithm. (d) Final
schedule. A job in block By is in Early(l) if the corresponding box is shaded and it
is in Late(l) otherwise.

Next, assume that C;_1 + p; > d;. Then we schedule job i directly after job i — 1.
This implies that C; = C;_ + p; and that job i is added to the last block B, of schedule
S;_1. Furthermore, we have that i € Lare(t), which implies that Ny, (¢) is increased
by one. As indicated in Figure 3.2(b), this may cause a violation of the invariant.
We now show how to repair it. Assume that the invariant is violated, i.e., B; does not
start at time zero and Njge (f) > Neariy(t). Because the invariant holds for schedule
Si_1, we have that S;_; satisfies Nju.(t) < Nearty (). Hence, we can strengthen the
assumption Nyge(t) > Nearty(t) t0 Nigre(t) = Nearty(t). This implies that advancing
the entire block B; does not change the cost of the schedule. We advance the block,
without changing the cost of the schedule, until one of the following three conditions
are satisfied.

e Block B; starts at time zero.
e Ajob j € Late(t) meets its due date.

e Block B;_; and B; are merged, i.e., the completion time of the last job of
block B;_ is equal to the starting time of the first job of block B;.

The invariant clearly holds if the first case occurs. In the second case Ny, (t) de-
creases by one and N1y (t) increases by one, which implies Nige(t) < Neariy(t).
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Next, consider the last case. As the invariant holds for S; {, block B; | starts at
time zero or Njge(t — 1) < Neary(t —1). Combined with Nyge(t) = Neariy(t) this
means that for the merged block BL | we also have that it starts at time zero or
Nlate(t - 1) < Nearly(t - 1)

The Block-Shifting algorithm is given in Figure 3.3. Furthermore, Figure 3.2 vi-
sualizes for an example the first three iterations of the algorithm and its final sched-
ule.

algorithm Block Shifting

begin
Cl = dl;
i:=2;
while i <n do
begin
if Ci—1 + p; < d; then C; :=d;
else
begin
C:=Ci1+p;
B; :=last block;
while invariant violated do advance B;;
end
i=i+1;
end
end;

Figure 3.3. The Block-Shifting algorithm, which is used for 1|| ¥; E; + T} to derive
a solution from an indirect representation. Without loss of generality, it is assumed
that the jobs have to be scheduled in increasing order

Theorem 3.2. The schedule computed by the Block-Shifting algorithm returns a
schedule that minimizes ¥.; Ej+ T; for a given ordering of the jobs.

Proof. We prove by induction on i that S; is an optimal schedule for the first 7 jobs.
The induction hypothesis clearly holds for i = 1. We now show that it also holds for
any i > 2 by deriving a contradiction from the assumption that an optimal schedule
S! of the first i jobs has strictly lower cost than S;. We distinguish the same two cases
as in the presentation of the algorithm.

Case 1: Ci_1 + p; < d;. We then have f(S;) = f(Si—1), where, by the induction
hypothesis, schedule S;_1 is optimal for the first i — 1 jobs. Obviously, removing job

i from S} does not increase the cost of schedule S;. Hence f(S}) > f(Si—1) = f(Si).
which contradicts our assumption that S} is better than ;.

Case 2: Ci_1 + p; > d;. The algorithm constructs S; by first constructing from S;_;
schedule R in which job i is scheduled directly after job i — 1. Next, the last block
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B; of R is advanced if the invariant is violated. As stated above, this operation
does not change the cost of the schedule. Hence, f(R) = f(S;) holds. We derive a
contradiction by showing that f(S’) > f(R).

Assume that the completion time C; of job i in schedule S/ is at least the comple-
tion time C; of this job in R, i.e., C; > C;. Let S;_, be defined as schedule S; minus
job i. Since C} > C; > d;, we have f(S}) = f(S;_,) +C/—d;. As f(Si_,) > f(Si-1),
by the induction hypothesis, and as C; > C;, we get f(S}) > f(Si—1) +Ci—di = f(R).

Assume, on the other hand, that C; < C;. This implies that C; < Cj holds for
each job j in B;, where C; and C; give the completion times of job j in S} and
R, respectively. Note that this implies that block B, does not start at time zero in
schedule R. We first prove by contradiction the auxiliary result that the jobs from
B; also form (a part of) a block in S!. Assume that jobs j and j + 1 are the first two
jobs from B; that are not direct successors in schedule S;. We show that the gap
between these jobs can be removed, such that the cost of the schedule decreases.
This contradicts our assumption that S} is optimal, which proves our auxiliary result
that the jobs from B, indeed form (a part of) a block in optimal schedule .

Let V(By, j) be defined as the set of jobs from B, that are smaller than or equal
to j, i.e., that have to be processed before job j. The invariant implies for B,
that Njge(t) < Neariy(t) holds at each stage of its construction, where Njq.(¢) and
Nearty (t) refer to B; at the stage under consideration. Because advancing a block may
add jobs to the set Early(t) but does not remove jobs from this set, this implies that
the set V(By, j) contains more jobs from Early(t) than from Late(r). Furthermore,
as long as the completion time of job j in S/ is strictly smaller than its completion
time in R, none of the jobs in V(B;, j) N Early(t) meets its due date in S,. This
means that, as a result of postponing the jobs from V (B, j) in schedule S; until the
completion time of job j coincides with the starting time of job j+ 1 (which is still
smaller than its completion time in R because C; < C;), we obtain that the jobs from
Early(t) cause a reduction of the cost that is strictly larger than the increase that
can be caused by postponing the jobs from Lare(r). Hence, S} is not an optimal
schedule, which yields a contradiction. This proves our claim that the jobs from B,
also form (a part of) a block in S.

This result, the assumption C; < C;, and the property that Nige(f) < Neariy(t)
holds in R imply that the total earliness and tardiness penalty incurred by the jobs
from B, is not smaller in S} than in R. Furthermore, by the induction hypothesis,
we have f(S;) > f(S;), where [ is i minus the number of jobs in B; and S is ob-
tained from S} by removing the jobs in B,. Because S; is contained in R, these two
observations yield f(S}) > f(R), which was to be proved. O

3.3 Job Shop Scheduling

JOB SHOP SCHEDULING, which can be written as J||Cmax, is one of the more diffi-
cult combinatorial optimization problems. Although the problem has already been
introduced in Section 2.2, we repeat its definition here.
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Definition 3.1 [JoB sHOP SCHEDULING]. Given are m machines and a set of n jobs
J={1,2,...,n}, where each job j € J consists of a set {01;,02j,...,0m;;} of m;
operations. Furthermore, for each operation o;; we are given a machine u;; on which
it has to be processed and a processing requirement p;;, where we have u;; # tiy1,;
for all j € J and 1 <i < mj. The problem is to find a schedule with minimum
makespan. This means that we have to find a starting time o;; for each operation
0;j, such that forall j € J and 1 <i < m; we have

Gij + Pij < Oit1,j,
such that forall j,j' € J, 1 <i<mj,and 1 <i' <mj with 0;; # 0y we have
(uij = miy) A(0ij < 0yr) = 01+ pij < O,
and such that
max (G, + P, j)
is minimal. O

The best known local search algorithms are based on a representation of a problem
instance as a node-weighted disjunctive graph G = (V, A, E) in the following way.

e The node set V contains a source node s, a target node ¢, and a node for each
operation o;; with j € J and 1 <i <m;. The weights of s and ¢ are zero and
the weights of the other nodes are given by the processing requirements of
the corresponding operations. The nodes s and ¢ are two fictitious operations
with zero processing requirement that serve as pointers to the beginning and
end of the schedule.

e The arc set A contains an arc (0,0') if o = s and ¢’ is the first operation of a
job, if 0 and o' are two successive operations of the same job, and if o is the
last operation of a job and o' =1.

e The edge set E contains an edge between any two operations o;; and oy jr,
0ij # oy i, that have to be processed on the same machine, i.e., for which
Mij =My jr holds.
The interpretation of an arc (0,0') € A is that operation o has to be processed before
operation o' because of the precedence constraints imposed by the jobs, and the
interpretation of an edge {0,0'} € E is that operation o must be processed before
operation o' or vice versa because a machine can only process one job at a time.

Example 3.1. Figure 3.4 gives the node-weighted disjunctive graph corresponding
to a problem instance with two jobs and three machines. Both jobs consist of
three operations, and all operations have a processing requirement of one time unit.
Furthermore, operations o1 and 03, have to be processed by machine 1, operations

021 and 0y by machine 2, and operations 03 and 01> by machine 3; see Table 3.1.
O

Let, for a given schedule, m;(I) define the /th operation processed by machine i.
Then we call the tuple I1 = (m;,my,...,M,) the machine ordering of the schedule.
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Figure 3.4. Node-weighted disjunctive graph corresponding to the problem instance
of Example 3.1.

We present a polynomial-time algorithm for finding an optimal schedule for a given
machine ordering Il. Note that such a schedule may contain idle time. Using the
algorithm, we can, as for problem 1||Y, JEi+Tj in Section 3.2, base a local search
algorithm on the solution space that contains all machine orderings. However, un-
like for 1||3;E; + T;, we also use this algorithm to restrict our solution space to
a subset of all machine orderings and to formulate the neighborhood function. A
machine ordering IT can be modeled in the disjunctive graph corresponding to the
problem instance considered by orienting the edges of E. If m; states that operation
o is processed before operation o’ on machine i, then the edge {0,0'} € E is replaced
by the arc (0,0"). We define Epy as the set of arcs obtained by orienting the edges
from E according to I1. We denote the resulting digraph by Dy = (V,AUEp). To
illustrate this, consider Example 3.1. Figure 3.5 gives the corresponding digraph for
each possible machine ordering. For instance, the first digraph corresponds to the
machine ordering defined by m; = (011,032), T2 = (021,022), and 13 = (012,031).

Obviously, if a feasible schedule exists that satisfies I'l, then Dy is acyclic and
the cost Cipax of the schedule is at least the length of a longest directed path from
s to ¢t in Dy, where the length of a path is defined as the total weight of the nodes
the path visits. Conversely, if Dy is acyclic, then we can derive a feasible schedule
for which the cost is given by the length of a longest directed path from s to . This
schedule can be constructed by defining the completion time of an operation o as
the length of a longest path from s to 0. Figure 3.6 gives the schedules that are
obtained in this way for the acyclic digraphs in Figure 3.5. Summarizing, we have
that machine ordering IT implies a feasible schedule if and only if Dy is acyclic.
Furthermore, if Dyj is acyclic, then the problem of deriving an optimal schedule for
IT corresponds to deriving a longest path from s to any node o € V in digraph Dry.
This problem can be solved in O(|A U Er|) time by the following algorithm, which,
in addition to using the property that Dy is acyclic, also uses the property that all
nodes in Dyy are reachable from s.

Initially, we give node s the label zero. All other nodes are left unlabeled. Next,
we repeat the following procedure. Find an unlabeled node o for which all prede-
cessors in the digraph are labeled. If such a node cannot be found, then terminate.
Otherwise, assign to node o the label w(0) +max o) caue,, label (o), where w(o) is
the weight of node o, i.e., the processing requirement of operation o, and label (0')
is the label of node o'.
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Table 3.1. Problem instance discussed in Example 3.1.

J {1,2} Pij 1
M {17273} (:ulluu2luu3l) (17273)
job 1l {oi1,021,031} (12,122,1432)  (3,2,1)

job2  {012,02,032}

The algorithm presented, which is given in pseudo-code in Figure 3.7, assigns a
label to each node o, and this label gives the length of a longest path from s to o, i.e.,
the completion time of operation o in an optimal schedule for I'l. A longest path in
a graph is also called a critical path. Correspondingly, we say that an arc is critical
if it occurs in some critical path.

We now define the following local search algorithm for a problem instance of
JOB SHOP SCHEDULING. As the solution space, we take the set of machine order-
ings IT = (n1,my,...,m,) for which a feasible schedule exists, i.e., for which the
corresponding digraph Dry is acyclic. For Example 3.1 this means that the solution
space only contains the machine orderings corresponding to the first four digraphs
in Figure 3.5. The cost of solution IT is defined as the length of a longest path in
the digraph Dy, which can be computed in O(|AUET|) time. Finally, we define the
neighborhood function as the swap neighborhood function presented for machine
scheduling problems in Section 2.2, except that we only swap two operations o and
o' in solution IT if they are both immediate successors on some machine and if the
arc (0,0') is on a critical path in Dy;. By the definition of JOB SHOP SCHEDUL-
ING, two successive operations of the same job have to be processed by different
machines. So we have (0,0") € Erj and not (0,0’) € A. Furthermore, if (0,0') € Eny
is on a critical path for some pair 0,0’ of operations, then o and o' are immediate
successors on a machine. Hence, IT is a neighbor of IT if Dry can be obtained from
Dry by reversing an arc (0,0') € Ey on a critical path in Dyy. Figure 3.8 gives the
neighborhood graph for the problem instance of Example 3.1.

A motivation for this neighborhood function, which we call critical-path swap,
is that reversing a non-critical arc in Dpj cannot lead to a better solution IT as the
digraph Dyy still contains each critical path from Dry. Furthermore, the following
theorem states that reversing a critical arc from Epj always yields a feasible solution.
This does not have to be the case if a non-critical arc from Efy is reversed, as cyclic
digraph 7 in Figure 3.5 can, for instance, be obtained from acyclic digraph 1 by
reversing the arc (011,032).

Theorem 3.3. Let Dyy be an acyclic digraph and let Dy be the digraph obtained
by reversing a critical arc e = (0,0') € Er. Then Dry is also acyclic.

Proof. 'We prove the theorem by contradiction. Hence, assume that Dyy is cyclic.
As, by definition, two successive operations of a job are not assigned to the same
machine, we have that (0,0') ¢ A and thus that (0, 0') is not an arc in Dyy. Further-
more, each cycle in Dy has to contain the arc (0',0) because any other cycle would
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Figure 3.5. All digraphs for the problem instance of Example 3.1. In each digraph
we indicate its longest path or, if the digraph is cyclic, its cycle.
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Figure 3.6. Schedules corresponding to the acyclic digraphs of Figure 3.5.

also be in D, which would contradict the assumption that Dy is acyclic. These
observations imply that Dy contains a path p = (0,x1,x2,...,x;,0') with [ > 1 and
x; ¢ {0,0'}. However, p can also be found in Dy, and the length of p is strictly
larger than the length of arc e = (0,0').This contradicts the assumption that e is on
a critical path of Dry. O

3.4 Bibliographical Notes

Theorem 3.1 has been proved by Smith [1956]. Lenstra, Rinnooy Kan & Brucker
[1977] prove that P2|| ¥ ;w;C;, which is a special case of problem R|| ¥ ; w;C; dis-
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algorithm Longest Path
begin
initialize Npreq;
label(s) := 0;
C:=0;
forall o’ € {0’ | (5,0') € AUEL} do
begin

pred( ) pred ( ) 1
if Nprea(0') =0then C:=CU{0'};

end

while C # 0 do

begin
select o € C;
label(0) == w(0) + maxy ,)caury label (0');
C:=C\{o};
forall o’ € {0’ | (0,0') € AUEn} do
begin

pred( ) pred ( ) - 1
if Nprea(0') =0then C:=CU{0'};

end

end

end;

Figure 3.7. An O(|AUEn]|) algorithm for deriving a longest path in an acyclic
digraph Dy = (V,AU Eq) from s to any other node, where each node is reachable
from s. Note that s has only outgoing arcs. In the algorithm, N,.q(o’) gives the
number of unlabeled predecessors of a node o’ and C gives the set of unlabeled
nodes for which all predecessors are labeled. The algorithm is used for JOB SHOP
SCHEDULING to derive a solution from an indirect representation, i.e., to derive an
optimal schedule for a given machine ordering IT.

cussed in Section 3.1, is NP-hard in the ordinary sense. Garey & Johnson [1979]
mention that if the number of machines is part of the input, then this special case
becomes NP-hard in the strong sense.

The algorithm proposed for solving 1|| ¥ E; + T; for a given permutation of the
jobs is due to Garey, Tarjan & Wilfong [1988]. They also prove Exercise 3(b) and
that the problem 1||¥;E; + T; is NP-hard. Based on similar ideas as those used
by Garey, Tarjan & Wilfong [1988], Davis & Kanet [1993] show that the problem
X w,E;+ w’jTj can be solved efficiently for a given permutation of the jobs, as
well.

The disjunctive graph formulation discussed in Section 3.3 is given by Roy &
Sussmann [1964]. Theorem 3.3 has been proved by Van Laarhoven [1988] and Van
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Figure 3.8. Neighborhood graph for the problem instance discussed in Example 3.1.
The number above a node gives the number of the corresponding digraph in Fig-
ure 3.5. The number inside the node gives the cost of the solution, i.e., the length of
a longest path in the digraph. It follows that the two schedules shown on the left in
Figure 3.6 are optimal. Obviously, the neighborhood graph is asymmetric and not
strongly connected.

Laarhoven, Aarts & Lenstra [1992]. Garey, Johnson & Sethi [1976] prove that JOB
SHOP SCHEDULING is already strongly NP-hard for two machines. Gonzalez &
Sahni [1978] show that this remains true if preemption would be allowed.

3.5 Exercises

1. Consider R||Tmax. We say that jobs are scheduled in earliest due date (EDD)
order on a single machine if they are scheduled in non-decreasing order of their
due date.

a) Prove that an optimal schedule for 1||Tmax is obtained by sequencing jobs
in EED order.

b) Design a neighborhood function for R||Tmax that is based on an indirect
representation.

2. Consider the following problem. Given are n uniform parallel machines, a bound
B, and a set of weighted jobs. Find a schedule that maximizes the total weight
of the jobs that have been processed at time B, where preemption is allowed.

a) Prove that Q|pmtn|Cnax is polynomially solvable.
b) Design a neighborhood function for the problem described that is based on

an indirect representation.

3. Consider 1|| ¥ ; E; + T;. In Section 3.2 we proved Theorem 3.2, which states that
for a given ordering of the jobs the Block-Shifting algorithm computes an opti-
mal schedule. Based on this result, we can tackle 1||¥; E; + T; by performing
local search on the solution space containing all permutations of the jobs.

a) Show that applying Block Shifting to the permutation in which the jobs are
ordered by increasing due date does not guarantee optimality.

b) Prove that if all jobs have the same processing requirement, then applying
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Table 3.2. Problem instance considered in Exercise 4.

J {1,2,3} Pi1,Pi3 1
M {1,2,3} P2 2
job1 {o11,021,031} (u1n,u21,031)  (1,2,3)
job2  {onz,0:} (412, 122) (2,1)
job3  {013,023,033} (W12,u20,132)  (2,3,1)
machine 1 [ 011 ] \ [ [[033]

machine 2 | 012 [ 0] 013]
machine 3 023
o 1 2 3 4 5 6

time

Figure 3.9. Schedule for the problem instance defined by Table 3.2.

Block Shifting to the permutation in which the jobs are ordered by increas-

ing due date does guarantee optimality.

4. Table 3.2 defines a problem instance of JOB SHOP SCHEDULING with three jobs

and three machines.

a) Give the node-weighted disjunctive graph G that models the problem in-

stance.

b) Give the machine ordering IT of the schedule depicted in Figure 3.9.

c¢) Give the digraph Dy that is obtained from G if we model I1.

d) Is IT locally optimal with respect to the critical-path swap neighborhood

function? Motivate your answer.
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Properties of Neighborhood Functions

In this chapter we analyze several neighborhood functions. More specifically, we
prove properties on the diameter and the connectivity of neighborhood graphs and
we relate the neighborhood graphs of different neighborhood functions. In Sec-
tion 1.1 we have seen that these properties can be considered as important necessary
conditions for the effectiveness of neighborhood functions. In addition, these prop-
erties enhance our understanding of the neighborhood functions and they can also
add value to the results proved later in this book. For instance, the O(n) diameter
we prove in Section 4.1 for the k-change neighborhood graph makes the exponen-
tial number of iterations that iterative improvement may require when using the
k-change neighborhood function even more intriguing. For the latter result we refer
to Chapter 6.

We first focus in Section 4.1 on neighborhood functions for TSP and next in
Section 4.2 on the neighborhood function that we presented in Section 3.3 for job
shop scheduling.

4.1 Traveling Salesman Problem

In this section we derive properties of the node-insertion and k-change neighborhood
function for TSP. First consider the former neighborhood function. In Exercise 2 of
Chapter 2 we asked the reader to prove the following result.

Theorem 4.1. For TSP, each node in the node-insertion neighborhood graph has
degree n(n—3) for any n > 4. O
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Furthermore, the following theorem states that the diameter is n — 2. Note that a
finite diameter implies that the neighborhood graph is strongly connected. From the
results it follows that to evaluate the neighborhood of a solution we only have to
consider O(n?) solutions and that we can reach any solution in O(n) steps. Com-
pared to the (n— 1)! size of the complete solution space, these numbers are much
more manageable. Note that a small diameter only indicates the existence of a small
sequence of moves that results in a global optimum. Finding such a small sequence
might still be difficult because of an unfavorable cost landscape. As such, a small
diameter can be interpreted as a desirable property, which, however, is not sufficient
for finding a (near) optimal solution fast.

Theorem 4.2. The diameter of the node-insertion neighborhood graph for TSP is
n—2.

Proof. We first prove that the diameter d satisfies d < n — 2 by showing for a pair
7,7 of arbitrary tours that tour T’ can be obtained from T by performing at most n — 2
node-insertion moves. As tours are equivalent if they only differ in the city in which
they start, we may assume that T'(1) = t(1).

We construct T' from T by successively removing cities t'(3),7 (4),...,7(n)
from T and inserting them in that order directly before T'(1). If a city (i) is as-
signed to the same position as the position from which it was removed, then the
node insertion on 7' (i) is skipped. As the total number of node insertions is at most
n—2,weobtaind <n-—2.

To prove d > n— 2, assume that this is not true. So, let d < n—3. We show
that this leads to a contradiction. Consider the tour T = (1,2,...,n) and the tour
v = (n,n—1,...,1) obtained from T by reversing the order in which the cities are
visited. By the assumption that d < n— 3, tour T' can be constructed from T by
performing at most d < n — 3 node-insertion moves. This implies that 7' can be
constructed by changing the position of at most n — 3 cities and by keeping the
mutual order of at least three cities intact. However, for any three cities i, j,k with
i < j < k we have that tour T visits them in the order i, j,k, while T’ visits them in
the order k, j,i. This gives rise to a contradiction. O

Theorem 4.4 states that the 2-change neighborhood function also implies a neigh-
borhood graph with an O(n) diameter. Recall that in Section 2.1 we have already
indicated the following result.

Theorem 4.3. For TSP, each node in the 2-change neighborhood graph has degree
nn—2)+2. O

Hence, the degree and diameter of the neighborhood graph of 2-change and node
insertion is of comparable quality.

Theorem 4.4. The diameter d of the 2-change neighborhood graph for TSP satis-
fies 5 <d <n-—2foranyn>>5.

Proof. Obviously, two tours are equivalent if they are equivalent in their first n — 1
positions. Hence, to prove the upper bound on d, it suffices to prove by induction
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Figure 4.1. Definitions of ey, e3, and T'. A bold edge indicates that the edge is also
present in tour T, and a normal edge indicates that this is not necessarily the case.

on m that, for any two tours T and %, we can transform T into a tour T’ that satisfies
(i) = (i) for 1 <i < m by performing a 2-change at most m — 1 times. As moti-
vated in the proof of Theorem 4.2, we may assume that (1) = T(1). Furthermore,
without loss of generality we can consider SYMMETRIC TSP because a neighbor-
hood contains by definition a tour in both possible directions. As a consequence, we
may assume that £(2) is one of the first [ 7] cities in 7.

The induction hypothesis trivially holds for m = 1. Next, assume that m > 1.
By the induction hypothesis, we can transform tour T into a tour t” with (i) = (i)
for 1 <i < m by performing a 2-change at most m — 2 times. Hence, it suffices to
show that if ©”(m) # (m), then we can transform tour T into a tour T’ satisfying
7' (i) = (i) for 1 < i < m by performing a single 2-change. Let j be such that
t'(j) = T(m). Note that m < j < n. We construct T from t" by performing a
2-change on the edges e; = {t"(m—1),7"(m)} and e; = {7"(j),7"(j +1)}; see
Figure 4.1. These two edges are not successive as can be verified as follows. If
e were to directly precede ey, then we would have j = m, which contradicts our
assumption T (m) # T(m). Suppose, on the other hand, that e; directly succeeds e.
In that case e¢; would be the first edge in tour T and e, the last one. This would
mean that m = 2 and that ©(2) is the last city in tour T/. However, as T’ = 1 for
m = 2, this contradicts our assumption that T(2) is one of the first [ ] cities in tour
T.

Because e; and e; are not successive, the 2-change based on these edges is
feasible. Moreover, it does not change the subtour ©(1),%(2),...,T(m — 1) and it
adds the edge {T(m — 1),%(m)} to the tour. Hence, tour T’ satisfies t'(i) = (i) for
1 < i < m, which proves our induction hypothesis. This concludes the proof that
n — 2 is an upper bound on diameter d.

We now show that } gives a lower bound ond. Let t= (1,2,...,n). If nis odd,
we define tour v as (1,3,5,...,n,2,4,6,...,n— 1), i.e., it first visits all odd cities
and then all even cities. If n is even, then we define T' similarly, except that city n
is visited between city 2 and 4. Hence, in that case we have that tour T’ is given by
v =(1,3,5,...,n—1,2,n,4,6,...,n —2). Clearly, tours T and T’ do not have edges
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in common. As a 2-change replaces at most two edges, this implies that at least
2-changes are necessary to construct T from 7. This proves d > 5 O

While in the above the focus was on studying the structure of individual neighbor-
hood graphs, we now relate the structure of different neighborhood graphs. More
specifically, we study the question of whether solutions that are neighbors of each
other in one neighborhood function are also near to each other in another neighbor-
hood function.

We start by relating 3-change and node insertion. An example of a node-
insertion move is given in Figure 2.7. Obviously, the node insertion depicted in
this figure is also a 3-change. The following theorem states that this is generally
true. In the proof we write suc(i) for the city that directly succeeds city 7 in tour T.
Analogously, pred: (i) defines the city that directly precedes city i in tour .

Theorem 4.5. Each node insertion can be written as a 3-change. This means that
the 3-change neighborhood function dominates' the node-insertion neighborhood
function.

Proof. Let T be obtained from T by reinserting city i between city j and suc(j).
Then 7' is also obtained from T by performing the 3-change that first replaces the
edges ey = {pred.(i),i}, ex = {i,suc:(i)}, and ez = {j,succ(j)} in the symmetric
variant of T by the edges {pred:(i),suc:(i)}, {j,i}, and {i,suc;(j)} and that next
chooses the appropriate direction for the constructed symmetric tour. We note that
if pred.(i) = suc<(j), then the 3-change is actually a 2-change because the edge e,
that is removed is the same as the edge {i,suc:(j)} that is added. a

Note that the theorem implies that each local optimum of 3-change is also a local
optimum of node insertion. Intuitively, the theorem states that when using 3-change
we have a ‘wider’ view than with node insertion. This supports the better average-
case performance that is obtained with the former neighborhood function. We note,
however, that in individual cases node insertion might guide a given starting tour to
a better local optimum.

The following theorem states that if tour T’ is a 3-change neighbor of tour T, then
7' can be reached from 7 in at most three steps in the 2-change neighborhood graph.

Theorem 4.6. Let T be an arbitrary tour and let T be a 3-change neighbor of T.
Then T can be constructed from T by performing at most three 2-changes.

Proof. Without loss of generality, we can restrict ourselves to SYMMETRIC TSP. By
definition, T’ is obtained by either a single 2-change or by removing exactly three
edges e1, ez, and e3 from T and replacing them by three new edges. We only have
to consider the latter case. It can be verified that if all three edges selected from
T are successive, then we cannot construct a new tour by replacing them by three
new edges. Hence, at least one selected edge from t is not adjacent to the other two
selected edges. First of all, assume that none of the three selected edges are adjacent.
Then the only possibilities for tour T’ are alternatives 1 to 4 shown in Figure 4.2(a).

1See Definition 1.8.
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Figure 4.2. Construction of tour T’ from T in at most three 2-changes in the case that
(a) none of the three selected edges from T are adjacent and (b) two of these edges
are adjacent.

The figure also shows how the four alternatives can be constructed by a sequence of
at most three 2-changes.

Next, assume that exactly two of the three selected edges from T are adjacent.
Figure 4.2(b) depicts the only possibility for tour t" and it shows how T’ can be
constructed from T by performing two 2-changes. ]

From Theorems 4.5 and 4.6 it follows that a node-insertion move can be simulated
by at most three 2-changes. We can strengthen this claim to the following result.

Theorem 4.7. Let T be an arbitrary tour and let T be a node-insertion neighbor of
T. Then T can be constructed from T by performing at most two 2-changes.

Proof.  In the proof of Theorem 4.5 we indicated that tour T can be constructed
from 7 by a 3-change on three edges of which two edges are adjacent. Furthermore,
we showed in the proof of Theorem 4.6 that a 3-change on three edges of which two
edges are adjacent can be simulated by two 2-changes. O
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4.2 Job Shop Scheduling

In this section we revisit the indirect representation of JOB SHOP SCHEDULING
discussed in Section 3.3 and the critical-path swap neighborhood function we pro-
posed for it. It can easily be verified that, except for this neighborhood function, all
neighborhood functions discussed so far have the property that the corresponding
neighborhood graphs are strongly connected. This property means that if a local
search algorithm makes a long walk through the neighborhood graph and does not
stop at the first local optimum it encounters, then the algorithm can reach a globally
optimal solution as far as the structure of the neighborhood graph is concerned.

This property would also be true for JOB SHOP SCHEDULING if we would not
define the solution space as the set of machine orderings for which a feasible sched-
ule exists, but as the set of all machine orderings, and if we were to assume a neigh-
borhood function in which any two successive operations on the same machine may
be swapped instead of only two successive operations o and o’ for which the arc
(0,0') is on a critical path in the digraph of the solution considered. Figure 3.8
shows that, as a result of the proposed restriction on both the solution space and
the neighborhood of a solution, the neighborhood graph is no longer strongly con-
nected. However, Theorem 4.8 states that it is still weakly optimally connected. To
prove this theorem, we need the following lemma.

Lemma 4.1. Let I1 be an arbitrary suboptimal machine ordering, and let IT* be an
optimal machine ordering. Then Dy contains a critical arc (0,0') € Ery that does
not occur in Dy, i.e., Dr« contains (0',0).

Proof. Assume that the lemma does not hold. Hence, assume that each critical arc
in Dyy also occurs in Dry=. In that case the length of a longest path in IT* is at least
the length of a longest path in I'l, which is equivalent to saying that the cost of IT* is
at least the cost of I1. This contradicts our assumption that IT is suboptimal and that
IT* is optimal. |

Theorem 4.8. The critical-path swap neighborhood graph for JOB SHOP
SCHEDULING is weakly optimally connected.

Proof.  We prove the theorem by contradiction. Let IT* be an optimal machine
ordering and V be the non-empty set containing all machine orderings from which
we cannot reach an optimal machine ordering. Furthermore, let IT be a machine
ordering from V for which A(TT,IT*) is minimal, where A(IT,TT") is the number
of arcs occurring in Dy, but not in Drj<. Note that A(TT,IT*) = A(TT*,IT). Ob-
viously, A(IT,IT*) > 0 holds, which by Theorem 3.3 and Lemma 4.1 implies that
we can construct a machine ordering IT' that is a neighbor of IT and for which
A(TT,TT*) = A(TT,IT*) — 1. As IT must also be in V, this contradicts the property
that A(TT,TT*) is minimal. |

A block of a machine ordering I'Tis defined as a maximal sequence of operations that
are processed consecutively and with no idle time on the same machine and that are
contained as a sequence in a longest path of Drj. As mentioned in Section 3.3, the
critical-path swap neighborhood function is based on the observation that swapping
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machinel | 1 [ 2 [ 3 [ 4 |
machine 2
0 29
(a) time
machinel [ 4 [ 3 [ 2 [ 1 |
machine 2
0 30
(b) time

Figure 4.3. (a) Optimal schedule. (b) Schedule from which restricted neighborhood
function cannot reach an optimal schedule.

the order of two successive operations o and o’ on a machine can only result in a
better solution if they are contained in a block. In addition, we have that such a swap
can only be successful if 0 and o are not both internal operations of a block. This
can be verified as follows. Let 0.4 be the predecessor of job o in a longest path p
and let 0/, be the successor of job o’ in this path. As o and o’ are internal operations,
Operations 0peq, 0, o', and 0}, are all processed on the same machine. This yields
(0prea,0") € En and (0,0},.) € Eri. Hence, after swapping the order of o and o/,
i.e., after reversing (0,0’) € Eqy, the digraph contains path p with only the order of
o and o' exchanged. This yields that the length of a longest path from s to ¢ does
not decrease. This observation suggests that we further restrict our neighborhood
function, such that it only allows the reversal of critical arcs (0,0'), in which o and
o' are not both internal operations of the same block. The following example shows
that this restriction has the drawback that the neighborhood graph need no longer be
weakly optimally connected.

Example 4.1. Assume we have four jobs, each consisting of two operations. The
first operation of each job has a processing requirement of seven time units and it has
to be processed on machine 1. The second operation of each job has to be processed
on machine 2 and it has a processing requirement of two time units for jobs 1 and 2
and of one time unit for jobs 3 and 4. Figure 4.3(a) depicts an optimal schedule for
this problem instance. The schedule has a makespan of 29.

As the total processing time on machine 2 is smaller than the processing re-
quirement of a single operation on machine 1, it holds for any machine ordering
IT = (m;,my) that the longest path in digraph Dy starts with the block By given by
By =m(1),m1(2),m1(3),m1(4) and ends with a block B, containing at least the sec-
ond operation o0;; of the job j containing operation 1t;(4). Based on this, we can
make the following two observations. (i) The makespan of an optimal schedule for
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IT is at least 4-7 = 28 plus the processing requirement p;; of operation 0,;; see
Figures 4.3(a) and 4.3(b). (ii) Regarding machine 1, the new neighborhood func-
tion only allows us to swap either the first two or the last two operations. From
the first observation it follows that, in an optimal schedule, the last job processed
by machine 1 is either job 3 or job 4. From the second observation it follows that
if we start with the machine ordering corresponding to the schedule given in Fig-
ure 4.3(b), then we can never reach a machine ordering in which machine 1 ends
with processing job 3 or job 4. When we combine these two conclusions we obtain
that we cannot reach an optimal solution from the machine ordering underlying the
schedule of Figure 4.3(b). O

4.3 Bibliographical Notes

Theorem 4.4 states that the diameter of the 2-change neighborhood graph is bounded
between } and n— 2. Stadler & Schnabl [1992] prove the slightly weaker result that
this diameter is bounded between / and n — 1.

Section 4.2 is based on the work of Van Laarhoven [1988] and Van Laarhoven,
Aarts & Lenstra [1992]. Matsuo, Suh & Sullivan [1988] observe that reversing a
critical arc (i, j) cannot improve a solution if both i and j are internal operations of
a block. By a different and slightly more complicated example than Example 4.1
Dell’Amico & Trubian [1993] show that using this observation yields a neighbor-
hood function that is no longer weakly optimally connected.

4.4 Exercises

1. Show that the node-insertion neighborhood graph has a smaller diameter for
SYMMETRIC TSP than for TSP, which by Theorem 4.2 is n — 2.

2. Consider TSP. We define the inversion-and-insertion neighborhood function,
such that a tour v is a neighbor of tour T if and only if it can be obtained by
removing a segment of any number of consecutive cities from T and reinserting
the segment as is or inverted between any two remaining cities in T.

a) Prove that this neighborhood function is equivalent to the 3-change neigh-
borhood function.

b) What does this result say about the relation between the 3-change neigh-
borhood function and the Or neighborhood function?

3. Let G = (V,E) be a graph with maximum degree A and with diameter D.
a) Prove that

D—1
VI<1+4 Y AA-1)". (4.1)
i=0
b) Show that (4.1) can be rewritten to
AA—-1)P -2
V| <
Vi< A-2

This bound is known as the Moore bound.
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¢) Use the Moore bound to derive a lower bound on the diameter of the 2-
change neighborhood graph for TSP with n = §,10, and 12 cities.

4. We define graph O, = (V, E), such that the node set V is given by the set of binary
sequences of length n and {i, j} € E for i,j € V if and only if the Hamming
distance between i and j is 1. Graph O, is called a hypercube of dimension n.

a) Give the degree and diameter of hypercube Q,.

b) Prove an upper bound on the number of local optima in a neighborhood
graph that is given by Q,.



Performance Guarantees

The two main aspects that determine the performance of an algorithm are the qual-
ity of the solutions it finds and its running time. In this chapter we study the former
for iterative improvement, which corresponds to determining the quality of local
optima. The running time of iterative improvement and, more generally, the com-
plexity of finding a local optimum is the subject of Chapter 6.

To measure the quality of the solutions returned by a given algorithm, we can
perform the following types of analyses.

o Empirical analysis. The performance of the algorithm is evaluated over a
possibly large set of problem instances.

e Probabilistic analysis. This analysis aims to determine the average-case per-
formance for a given probability distribution of the instances.

e Worst-case analysis. Here, we are interested in the worst case, i.e., guaran-
teed, performance of the algorithm over all possible problem instances.

In most cases a local search algorithm is evaluated by means of an empirical analy-
sis. We focus on the worst-case performance of iterative improvement.

In Section 5.1 we give examples in which iterative improvement is guaranteed
to end up in an optimal solution, which means that the underlying neighborhood
function is exact. Next, we analyze the performance ratios of local optima for the
k-change neighborhood function and for some machine-scheduling neighborhood
functions in Section 5.2. We note that a neighborhood function has a performance
bound U if all its local optima have a cost at most U times the optimal cost. If
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bound U is tight, then U is called a performance ratio. The terms performance ratio
and performance bound are also used to indicate the quality of an algorithm; see
Appendix B. In Sections 5.3 and 5.4 we finally elaborate on the relation between
the formal hardness of finding an R-approximate solution and the existence of an
efficient neighborhood function with a performance bound of R.

5.1 Exact Neighborhood Functions

A neighborhood function is said to be exact if each locally optimal solution is also
globally optimal. In this section we present some examples of exact neighbor-
hood functions. First of all, consider SORTING. Sorting a multiset of » numbers
ai,az,...,a corresponds to finding a permutation 7 of {1,2,...,n} that minimizes
the cost function f(m) =Y7 , i+ ag(;) if the numbers have to be put in non-increasing
order and that maximizes this cost function if they have to be put in non-decreasing
order. A well-known algorithm for SORTING is bubble sort. This algorithm starts
with an arbitrary permutation 7 and then swaps repeatedly two adjacent numbers
that are not in the right order. Bubble sort finds an optimal solution to SORTING be-
cause a sequence of numbers is sorted if and only if any two adjacent numbers in the
sequence are sorted correctly. Obviously, swapping two adjacent numbers improves
the cost of a permutation if and only if they are not in the right order. This means
that bubble sort corresponds to iterative improvement with the neighborhood func-
tion that constructs neighbors by swapping two adjacent numbers. Because bubble
sort solves SORTING, this neighborhood function is exact.

The swap neighborhood function is also exact for the machine scheduling prob-
lem 1||¥;w;C;. For this problem Theorem 3.1 states that an optimal schedule is
obtained by putting the jobs in SWPT order. In the proof of Theorem 3.1, we ar-
gued that we can improve upon a suboptimal schedule by swapping two adjacent
jobs. Hence, the only schedules for which no improving swap exists are the opti-
mal schedules. This implies that the swap neighborhood function is exact. Note
that although this machine scheduling problem is equivalent to sorting a multiset
of numbers in non-decreasing order, the exactness of the swap neighborhood func-
tion does not follow directly from the exactness of this neighborhood function for
SORTING because we consider different cost functions for the problems.

In Section 2.3 we presented a polynomial-time algorithm for MINIMUM SPAN-
NING TREE, in which we are asked to find a spanning tree with minimum weight
for an edge-weighted graph. This problem can also be solved by applying itera-
tive improvement with the exact neighborhood function proposed in the following
theorem.

Theorem 5.1. Consider for MINIMUM SPANNING TREE the neighborhood function
that generates a neighbor of a spanning tree T in the following way. First of all, we
add an arbitrary edge to T. This produces a single cycle. From this cycle we delete
an arbitrary edge, which gives a new spanning tree. This neighborhood function is
exact.

Proof. Suppose we have a spanning tree T that is a local optimum, but not a global
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interior cities

Figure 5.1. Convex hull of the French cities Paris, Strasbourg, Lyon, Nice, Marseille,
Toulouse, Bordeaux, Nantes, Le Havre, and Lille. Paris and Lyon are interior cities.

optimum. To prove the theorem, we show that this yields a contradiction. Let 7™ be
an optimal spanning tree that has a maximum number of edges in common with 7.
Furthermore, let e be an edge with minimum weight from the set of edges that are
in 7% but not in 7. As any spanning tree has n — 1 edges, such an edge exists. The
removal of e splits 7* into two subtrees 7} and T,’. We now construct a neighbor
T’ of T as follows. First, we add edge e to T. This results in a cycle c. Besides e,
this cycle must contain at least one other edge ¢’ connecting a node from 7" with a
node from 7,'. We now construct 7’ by removing ¢’ from c.

Because T is a local optimum, we have that the cost of 7" is at least the cost of
T. Hence, w(e) > w(e'), where w(e) and w(e') give the weights of edges e and ¢'.
However, this implies that connecting 7} and 7" by edge ¢’ results in a spanning
tree that is at least as good as 7" and that has at least one edge more in common
with T. This yields a contradiction. Hence, the proposed neighborhood function is
exact. |

5.1.1 *Euclidean TSP with Few Interior Cities

Consider an arbitrary problem instance of EUCLIDEAN TSP. The convex hull of its
n cities is defined as the smallest convex polytope that contains all n cities. A city
is called interior if it is not on the boundary of the convex hull. Figure 5.1 depicts a
problem instance of EUCLIDEAN TSP with ten cities, of which two cities are interior.
We prove that 2-change is exact for problem instances of EUCLIDEAN TSP with no
interior cities. For problem instances with n;, > 1 interior cities, we show that k-
change is exact if and only if £ > 2n;, + 1. For the example of Figure 5.1, the result
implies that 5-change is guaranteed to give an optimal tour.

In the proof of these results, we use that locally optimal tours have no touching,
intersecting, or overlapping edges. We first prove this property.

Definition S.1. Consider an arbitrary tour for a problem instance of EUCLIDEAN
TSP, and let e and e, be two edges in this tour. If e; and e, have infinitely many
points in common, then they are called overlapping. If e; and e, only have one
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Figure 5.2. Cases distinguished in the proof of Lemma 5.1. The cities between g
and r are lying on the edge {g,r}.

point p in common, then they are called intersecting in the case where p is not an
end point of at least one of the edges and they are said to fouch in the case where p
is an end point of exactly one of the two edges. a

We note that it follows from the definition above that if two edges are successive,
they can possibly overlap, but they cannot intersect or touch.

Lemma 5.1. Consider a problem instance of EUCLIDEAN TSP, in which not all
cities lie on a straight line. Furthermore, let T be a locally optimal tour with respect
to the k-change neighborhood function for any k > 2. Then two arbitrary edges in ©
do not touch, intersect, or overlap.

Proof. As a 2-change is also a k-change for any k > 3, it suffices to prove that the
lemma holds for k = 2. Let T be a locally optimal tour with respect to the 2-change
neighborhood function, and let T contain two edges that intersect, touch, or overlap.
To prove the lemma, we show that this yields a contradiction.

First, suppose that T contains two intersecting edges. We then have the situa-
tion sketched in Figure 5.2(a) for some pair of non-successive edges e; = {u1,v1}
and ez = {uz,v2}. Let p be the intersection point of e; and e;. Obviously, we
have d,, p +dpu, > dy, u, and dy, p +dp,, > d,, ,, (note that this does not fol-
low directly from the triangle inequality, which states that dy, , +dp 4, > dy, u, and
dy, p+dpy, > dy, ). As aresult, replacing e; and e by {u,uz} and {vi,v2}
improves the length of tour 2, which contradicts our assumption that 7 is a local
optimum.

Next, assume that © contains two edges e; = {u1,v1} and e; = {uz,v2} that
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touch; see Figure 5.2(b). Also in this case, replacing e; and e, by {uj,u2} and
{v1,v2} yields a tour that is shorter than 1. Hence, we again arrive at a contradiction.

Finally, suppose that the locally optimal tour T contains two overlapping edges
e1 and e, lying on a line /. We define cities g; and r; with i = 1,2, such that the tour
enters [ at g;, remains on [ until it visits e;, and leaves [ for the first time at r;. The
part of the tour that starts at g; and ends at r; is called a section. All cities visited in
this section must lie between ¢; and r;. Otherwise, the edge entering g; or leaving r;
touches the edge in the section passing g; or r;, which yields a contradiction, as we
showed above.

If e; and e; do not belong to the same section, but to two different sections s
and s, then at least one of the two edges adjacent to s touches an edge of s; or vice
versa. This means that we may assume that e; and e, belong to the same section.
As a result, we can assume that, between visiting g = q; = ¢q» and r = r| = rp, tour
7 moves back and forth on line / at least once. From this assumption, we will derive
a contradiction.

Let V be the set of cities contained in section 51 = s>, and let the cities in V be
numbered from 1 to |V| in order of increasing distance from ¢g. Without loss of gen-
erality we assume T(1) = 1, i.e., g is the first city in tour T. By assumption, T moves
back and forth on line / when visiting the cities from V. This means that an i < |V|
exists with 7(i) > 7(i+ 1). Let i be the smallest integer with this property. Further-
more, let j be the smallest integer larger than i with (j) > %(i); see Figure 5.2(c).
Ascity |V|, i.e., city r, is visited last, j exists. Note thati > 2 and j > i+ 2. Perform-
ing a 2-change on the edges {T(i—1),%(i) } and {2(j —1),%(;j) } yields a neighboring
tour T of T. We now show that 7 is shorter than 1, which contradicts our assumption
that 7 is locally optimal.

Let ¢ be the smaller of the two cities t(i — 1) and t(j — 1). By the minimal-
ity of i, we have 2(i — 1) < 2(i). Furthermore, by the minimality of j and because
Jj > i+2, we have T(j — 1) < %(i), which yields T(j — 1) < (i) < T(j). As are-
sult, we obtain dej) < dy(i—1) 4(i) + di(j=1) 4() 30 der(j) > dai-1)2(-1) + (i) 2()-
This implies that the length of tour T minus the length of tour €, which is given
by d%(ifl),%(jfl) + d%(i),%(j) - d%(l',l)ﬁ(l‘) - d%(jfl),%(j)’ is negative. Hence, 7 is indeed
shorter than 2. This proves the lemma. |

We can now prove the result claimed for the special case where we do not have any
interior cities.

Theorem 5.2. The 2-change neighborhood function is exact for problem instances
of EUCLIDEAN TSP with no interior cities. It is not exact for the set of problem
instances of EUCLIDEAN TSP with one interior city.

Proof. 'We first prove that 2-change is exact for an arbitrary problem instance of
EUCLIDEAN TSP that does not contain interior cities. Consider the case in which not
all cities lie on a straight line. Then the tours that visit all cities in either clockwise
or counterclockwise order are the only tours in which any two edges do not touch,
intersect, or overlap. Hence, as the starting position and the direction of a tour are
irrelevant, Lemma 5.1 implies that we only have one local optimum. Obviously, this
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Figure 5.3. Example showing that 2-change does not have to be exact if we are
considering problem instances of EUCLIDEAN TSP with one interior city. Tour (a)
is globally optimal, while (b) is only locally optimal.

tour also has to be a global optimum. This yields that the neighborhood function is
exact.

Next, assume that all n cities are on a straight line /. In the proof of Lemma 5.1
we showed that, between visiting any two cities, a locally optimal tour cannot move
back and forth on the line segment between them. Hence, a locally optimal tour first
moves in a straight line from the innermost city to the outermost city and then moves
in a straight line from the outermost city to the innermost city. This clearly results
in an optimal tour length. Consequently, we find that the 2-change neighborhood
function is also exact if all cities lie on a straight line.

We now prove the second part of the theorem by giving a problem instance
with one interior city for which 2-change is not exact. Figure 5.3 shows a prob-
lem instance with five cities. The figure gives the positions of the cities in the
two-dimensional coordinate system. The four cities (0,0),(4,0),(4,2), and (0,2)
determine the convex hull and all lie on integer grid points. The only interior city
(2,1 +¢) lies slightly above the middle of the convex hull. Consider the two tours
given in Figures 5.3(a) and 5.3(b). It can be verified that tour (a) is shorter than
tour (b). Furthermore, it can be verified that all other tours are worse than these two
tours. Hence, as we require three edges to construct tour (b) from (a), tour (b) is a
local optimum, but not a global optimum with respect to 2-change. This shows that
2-change is not exact for the set of problem instances of EUCLIDEAN TSP with one
interior city. |

We now focus on the case in which we have at least one interior city, i.e., nj, > 1. To
prove that (2n;, + 1)-change is exact, we use an auxiliary result. This result, which
is proved below, is formulated as follows. Let P; and P, be two partitions of a set V
of items. If P; and P, are ‘non-separable’, then the total number of subsets in P; and
P, does not exceed |V|+ 1. Partitions P; and P are said to be non-separable if no
subset V' C V exists that is partitioned by a selection of the subsets of P; as well as
by a selection of the subsets of P>. In other words, P; and P> are non-separable if no
subset V' C V exists such that each subset in P; as well as in P, is completely either
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in V' orin V\ V'. To illustrate this, let V = {1,2,3} and let partition P; contain
the two subsets {1,2} and {3} and P, the three subsets {1}, {2}, and {3}. Then
Py and P, are separable as, for instance, V' = {1,2} is partitioned by P| containing
the first subset {1,2} of Py and by P; containing the first two subsets {1} and {2}
of P,. However, the partitions P; and P3, where Ps is given by {1} and {2,3}, are
non-separable, as can be verified.

Definition 5.2. Let P| and P, be two partitions of a set V of items. Furthermore,
let graph G = (V,E| UE») be such that {u,v} € E; with i € {1,2} if and only if u
and v are assigned to the same subset in partition P;. Then P; and P> are said to be
non-separable if G is connected. O

Lemma 5.2. Let Py and P> be two partitions of V.= {1,2,...,ny}. Furthermore,
let m; be the number of subsets in P; for i € {1,2}. If P| and P, are non-separable,
then we have my +my < ny + 1.

Proof. Assume that Py and P, are non-separable, and let G = (V,E; UE3) be the
connected graph induced by the two partitions. We prove that m| +my < ny + 1
holds.

When we leave the edges from E> out of consideration, graph G consists of m
components. Let G’ be defined as the graph whose nodes correspond to these m;
components and which contains an edge between components ¢ and ¢’ with ¢ # ¢’
if G contains an edge {j,j'} € E» between items j € ¢ and ;' € ¢/. Since G is
connected, G’ is also connected. Let T be an arbitrary spanning tree of G'. We
choose one of its nodes as its root, and we direct all its edges from the root to the
leaf nodes. Obviously, T contains m; — 1 arcs.

We now perform the following labeling action on each arc a = (¢,c’) in T. We
select one edge {j, '} € E» with j € c and j' € ¢’ corresponding to arc a. We then
label item j', i.e., the item corresponding to the head of arc a.

For the derived labeling, the following two properties hold. In the first place, we
have that zero items are labeled from the component represented by the root node
and exactly one item is labeled from a component that is represented by some other
node, where this single item is only labeled once. This is true because in directed
tree T the root has indegree zero and each other node has indegree one. Secondly,
we have that each subset in P> contains at least one unlabeled item. To show that this
claim is true, suppose that this is not the case and let A be a subset in P, containing
only labeled items. Furthermore, let W be the set of components in 7 that contain
an item from A. Since all nodes in A are labeled, it follows that 7 contains for each
¢ € W an arc that is directed from some node in W to node c. However, this implies
that T contains a cycle, which contradicts the fact that it is a tree. This proves our
second property.

From the second property, it follows that m, is at most the number of unlabeled
items, which by the first property is given by ny — (m; — 1). Hence, we obtain
my < ny —m + 1, which shows that indeed m; + my < ny + 1. [

Having proved Lemma 5.2 we are now ready to prove the following result.
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Figure 5.4. Example of a tour with four interior chains.

Theorem 5.3. The k-change neighborhood function is exact for the set of problem
instances of EUCLIDEAN TSP with nj, > 1 interior cities if and only if k > 2n;, + 1.
Proof.  We first prove that the (2n;, + 1)-change neighborhood function is exact.
Assume we have nj, interior cities with n;, > 1. Note that this implies that not all
cities lie on a straight line. Furthermore, let T be a locally optimal tour with respect
to (2nin + 1)-change and let T* be a shorter globally optimal tour. We show that this
leads to a contradiction.

We define an interior chain of a tour as a sequence of successive interior cities
in the tour. An interior chain is maximal in the sense that both the predecessor of
the first city and the successor of the last city are on the boundary of the convex
hull; see Figure 5.4. From Lemma 5.1, it follows that both 7 and t* visit the cities
on the boundary of the convex hull in either clockwise or counterclockwise order.
Without loss of generality, we assume that the direction is the same for both 1 and
T*. Hence, tours 7 and T* are determined completely by their interior chains and, for
each interior chain, the city on the boundary that precedes the chain.

The interior chains of a tour define a partition of the ny, interior cities, such that
two cities belong to the same subset if and only if they are in the same interior chain.
Let P and P* be the partitions implied by % and t*, respectively. Furthermore, let
graph G = (V, E| UEy) be defined as in Definition 5.2, where V is the set of interior
cities, E, refers to P, and E, refers to P*.

Consider an arbitrary component C of G. We define V¢ as the set of nodes in
C. By definition, the edges in C from E| completely define for T which cities from
Vc are contained in which interior chain. Similarly, the edges from E, completely
define for T which cities from V¢ are contained in which interior chain. We show
that by a single (2n;, + 1)-change, we can transform the interior chains covering V¢
in 7 into the interior chains on V¢ in t° without affecting the interior chains defined
by any other component in G and the way these chains are connected to the tour.
Obviously, because T* is shorter than 1, at least one component in G must exist for
which this transformation yields an improvement. However, the existence of such a
transformation contradicts our assumption that 7 is locally optimal. Hence, to prove
the exactness of the (2nj, + 1)-change neighborhood function, it suffices to prove
that we can transform the interior chains on V¢ in locally optimal tour T into the
interior chains on V¢ in globally optimal tour T*.
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Let P C P and Pj C P* be the partitions defined by G for the cities in V.
Hence, Pc defines the N, interior chains covering V¢ in 1 and P defines the N,
interior chains covering V¢ in t*. Disconnecting all interior cities from V¢ in 1
requires the removal of Nic + |Vc| edges. We can now construct the interior chains
covering V¢ as they are given in T*. To insert these chains in tour 1 in the way this
is done in T*, we have to remove at most N, additional edges from the boundary
of the convex hull. Below we prove that it is possible to insert an interior chain
at the right position. This means that if we have to insert an interior chain after
city i, then no interior chain that contains interior cities outside V¢ has already been
inserted directly after city i. Hence, by replacing Nic + |Vc| + Ny, edges, we can
replace the interior chains covering V¢ in 1 by the interior chains covering V¢ in 1.
Using Lemma 5.2, we obtain Nie +N; < [Ve|+ 1. As aresult, we have to replace at
most 2|Ve|+ 1 < 2ni, + 1 edges, which can be done by the (2n;, + 1)-neighborhood
function.

Hence, all that remains to be shown is that if in T° an interior chain ¢* with
nodes from V¢ has been inserted directly after city i on the boundary of the convex
hull and if 7 also has an interior chain ¢ that starts directly after city i, then interior
chain ¢ only contains cities from V. Assume that this is not the case. By the
definition of V(, this means that none of the cities of ¢ belong to V. Let j be
the city that succeeds i on the boundary of the convex hull in both T and t*. Note
that j directly succeeds ¢ and ¢*. We define h(c*) as the hull obtained by adding
edge {i,j} to ¢* and k(¢é) as the hull obtained by adding edge {i, j} to é&. We have
that at least one of the following cases holds: (i) at least one city of ¢ is in or on
h(c*) and (i) at least one city of ¢* is in or on /(¢). However, both cases lead to a
contradiction. By Lemma 5.1, the first case contradicts the global optimality of t*,
while the second case contradicts the local optimality of 2. This completes the proof
that the (2ni, + 1)-change neighborhood function is exact.

The claim that 2n;j,-change does not have to be exact for EUCLIDEAN TSP with
at most nj, interior cities can be proved by example. Assume that n;, is even and
consider the problem instance given in Figure 5.5. Unless indicated otherwise, all
edges have length one and the upper left corner and lower left corner are both right
angles. Furthermore, M is chosen relatively large and € > 0 very small. The values
of 8 and M’ can be derived from M and €. It can be verified that the tour given in
Figure 5.5(a) is a locally optimal tour with respect to 2n;,-change. However, the
globally optimal tour given in Figure 5.5(b) is € shorter. Based on similar ideas, we
can also construct a problem instance for which 2n;,-change is not exact in the case
where n;, is odd. O

5.2 Performance Ratios of Neighborhood Functions

For many problems an efficient exact neighborhood function is unattainable. In this
section we analyze the quality of solutions returned by iterative improvement for
some neighborhood functions that are not exact. More specifically, we study for
these neighborhood functions the quality of local optima relative to that of global
optima.
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(a) (b)

Figure 5.5. Example showing that 2n;,-change does not have to be exact if we
are considering problem instances of EUCLIDEAN TSP with nj;, interior city, where
nin > 0 is even. Tour (a) is locally optimal, and tour (b) is globally optimal.

Section 5.2.1 is devoted to analyzing the performance ratio of the k-change
neighborhood function for SYMMETRIC TSP and METRIC TSP, while in Sec-
tion 5.2.2 we analyze the performance ratio of the move and swap neighborhood
functions for the machine scheduling problems Pm||Cpax and Om||Cmax.

5.2.1 Performance Ratio of the k-Change Neighborhood Function

Consider SYMMETRIC TSP. As the neighborhood size of k-change is polynomi-
ally bounded, a single iteration of k-Opt, which corresponds to a single step in the
transition graph, can be implemented to run in polynomial time. Furthermore, The-
orem 2.1 states that finding a tour with length at most 27(") times the optimal length
is NP-hard for any fixed polynomial p. Hence, if we were to prove that k-Opt is
guaranteed to reach a locally optimal tour within a polynomial number of iterations,
then we would obtain that, unless P = NP, k-Opt does not admit a performance ratio
at most 27" for any fixed polynomial p. However, as we show in the next chapter,
k-Opt may require an exponential number of iterations, which implies that the given
reasoning is not applicable. The following theorem states that the lower bound of
27() on the performance ratio of k-Opt nevertheless holds. It even claims a stronger
result: no function in n exists that gives an upper bound on the performance ratio of
k-change. We note that this does not mean that it is impossible to bound the perfor-
mance ratio. It can, for instance, be bounded trivially by the largest distance in the
distance matrix d divided by the smallest distance in d.

Theorem 5.4. For any fixed k > 2 and n > 2k + 4, the performance ratio of the
k-change neighborhood function cannot be bounded by a constant for SYMMETRIC
TSP on n cities. This means that no function in n exists that gives a performance
bound for k-change.

Proof. For any k > 2 and € > 0, we define a problem instance of SYMMETRIC TSP
containing n = 2k 4 4 cities. For this problem instance we construct a locally opti-
mal tour £, which has a performance ratio of 1+ ! . It is easy to extend this problem

ne
instance and to modify the locally optimal tour, such that the problem instance con-
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7 7 7 8
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Figure 5.6. For k =5, the figure shows (a) graph G, (b) optimal tour T* of length ne,
and (c) locally optimal tour 1 of length 1 + ne.

tains any n > 2k + 4 cities, the tour 7 remains locally optimal, and the performance
ratio of 7 is still 1+ nle. Since for € — 0 this performance ratio approaches oo, this
proves the theorem.

We define the symmetric distance matrix d, such that all entries are given by
1 + ¢ except for the entries d; ;1 with 1 <i <n, dy, dy k4244 With [ = kmod2, and
din—iy1 with 2 <7 < k+2, which are all given by €. In this definition we restrict
ourselves without loss of generality to the entries d;; with 7 < j.

Let G = (V,E) be the graph obtained from the complete graph of n nodes by
maintaining an edge {i,;j} if d;; = € and by removing it if d;; = 1+ €; see Fig-
ure 5.6. Obviously, a tour has length ne if it defines a Hamiltonian cycle in graph
G and it has length at least 1 4 ne otherwise. Moreover, it can be proved that the
tour v = (1,n,n—1,2,3,n—2,n—3,...) defines the only Hamiltonian cycle in G,
where tours that only differ in their starting position or direction are considered to be
equivalent. Hence, tour t* is the only optimal tour and the length of any other tour
Tis at least 1 4+ ne. From this it follows that if a tour 7 has length 1 + ne and if it has
k+ 1 edges that are absent in T, then 1 is a locally optimal tour with performance
ratio 117 =1 4 nlg. It can be verified that such a tour is given by T = (1,2,...,n).

ne
This proves the theorem. |

In the remainder of this section, we focus on METRIC TSP. Although solving this
problem is as difficult as solving SYMMETRIC TSP (they are both strongly NP-hard),
it is easier to find an approximate solution for METRIC TSP than for SYMMET-
RIC TSP, as is stated by Theorem 2.1. Currently, Christofides’ algorithm is the
polynomial-time algorithm with the best known worst-case performance. This con-
structive algorithm works as follows. First of all, it computes a minimum spanning
tree T. Next, it converts this tree into an Eulerian graph, which is a graph in which
each node has an even degree. This is done by deriving a perfect matching on the
nodes with an odd degree. These edges are added to 7. For an Eulerian graph,
we can easily determine an Eulerian tour, which is a tour that traverses each edge
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exactly once. By introducing shortcuts, we can eliminate multiple visits to the same
city in the tour. This results in a tour for which it can be proved that its length is at
most g times the optimal length.

For k-Opt it has been proved that, for infinitely many 7, a lower bound on the

performance ratio is given by }‘\/n for k = 2 and by }‘nzlk for k > 3. Hence, from
a worst-case perspective the local search algorithm k-Opt cannot compete against
Christofides’ constructive algorithm. Nevertheless, k-Opt may still be preferred over
Christofides’ algorithm as in practice we may be more interested in a good average-
case performance than in a good worst-case performance. Hence, it is still interest-
ing to analyze the worst-case performance of k-Opt or, equivalently, k-change, not
only to obtain a worst-case performance guarantee, but also to enhance our under-
standing of the algorithm.

We will prove that k-Opt has a performance bound of 4/n for any k > 2. Note
that this performance bound differs by a constant factor from the presented lower
bound for k£ = 2 and by a factor that increases with n for any £ > 3. In order to prove
the result, we need the following auxiliary result that states that a locally optimal
tour cannot contain too many long edges as expressed as a fraction of the optimal
tour length.

Lemma 5.3. For an arbitrary problem instance of METRIC TSP, let [* be the opti-
mal tour length and % a locally optimal tour with respect to the 2-change neighbor-
hood function. For any i with 1 <i < n we have |E;| < i, where set E; contains the
edges {j,j'} from A withd;y > 2\12

Proof.  We prove the lemma by contradiction. So, suppose we have |E;| > i for
some i. Although the direction of 7 is irrelevant, we assume some orientation of the
tour. As aresult, the r = |E;| edges in E; transform into r arcs (¢;,h;) with 1 < j <r.
The cities ¢; and k; are called the tail and head of arc (¢;,4;).

We first show that a tail #, with 1 < u < r cannot be surrounded by too many
other tails of arcs from E;. Let V, be the set of all tails of arcs from E; that have a
distance of at most \l;l, from #,. Assume that |V,| > v/i. We prove that |V,| < /i by
showing that this assumption yields a contradiction.

Lettj,t; € V,,. Because the triangle inequality holds and because, by definition,
\/ 9
between £; and 15 is at most > \/, . This implies that the distance between the heads #;
¢ 2

the distance from ¢, to any of these two tails is at most we obtain that the distance

and A is at least <. If this would not be the case, then replacing the edges {¢;,4;}

and {t/,h] 1} in 1 via a 2-change into {¢;,¢;} and {h;,hy} would result in a shorter

tour because the length of each of the former two edges is larger than 2 \/l, by the
definition of E;. This would contradict the local optimality of 1.

Hence, |V,| > V/i heads can be identified in E; that all have a mutual distance of
at least 2/ . This implies that the optimal tour on these heads is at least 2/*, which
gives a contradlctlon because due to the triangle inequality it is not possible that an
optimal tour over all cities is shorter than the optimal tour over a subset of all cities.
This proves our claim |V, | < v/i. We use this result to derive a contradiction from
the assumption r > i, which settles the proof of the lemma.
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Consider the following labeling algorithm. Select an unlabeled tail 7, in E; and

label all tails in E; that have a distance of at most \l/*i from #,, (including #,). Repeat

this labeling step until all tails in E; are labeled. As proved above, fewer than +/i tails
are labeled in each iteration. As r > i, this implies that the labeling procedure takes
more than /i iterations. Obviously, the tails that are selected in these iterations all
have a mutual distance larger than \l/*i. This implies that the optimal tour has length

larger than /i - i/*i = [*, which results in a contradiction. This proves the lemma. O

Using Lemma 5.3 we can now prove the claimed result.

Theorem 5.5. The k-change neighborhood function has a performance bound of
4./n for METRIC TSP.

Proof.  To prove the theorem it suffices to show that a tour T has a performance
ratio of at most 44/n if it is a locally optimal tour with respect to the 2-change
neighborhood function. Lemma 5.3 yields that the ith largest edge in 1 has a length
of at most 2/, where I* is the optimal tour length. Hence, the length of 1 is at most

Vi’
n 2l* n l
=2I* .
Zimxy,

As \}X is a decreasing function in x € R, we have \}i < fffl \}X dx for any positive

G.D

integer i. Hence, the right-hand side of (5.1) is at most 2/* [ \}X dx, which equals
41*\/n. O

5.2.2 Performance Ratios of the Move and Swap Neighborhood Functions

In this section we address performance ratios for Pm||Cpax and Qm||Cmax. For
Pm||Cmax We indicated in Section 2.2 that an obvious representation of a sched-
ule is a partition P = (A;,As,...,A,) of the n jobs into m subsets, where subset A;
contains the jobs that are processed on machine i with 1 <i < m. The same solu-
tion representation can be used for Qm||Cpnax. For a partition P we define /; as the
amount of time machine i requires for processing all jobs in subset A;. Hence, [; is
given by ¥ jca, pj for Pm||Cinax and by ¥ ey, ’Zlf for Om||Cmax- Recall that s; gives
the speed of machine i. We call /; the load of machine i. Note that machine i is
critical if and only if [; = Cyax.-

In a local search algorithm we can use the move as well as the swap neighbor-
hood function, both of which were introduced in Section 2.2. The move neighbor-
hood function selects a job from a given subset (machine) and assigns it to another
subset (machine). The swap neighborhood function extends this neighborhood func-
tion by adding solutions to the neighborhood that can be obtained by interchanging
two jobs j € A; and j € Ay from two different subsets, i.e., j is assigned to Ay and
j' is assigned to A;.

Regarding the cost function, we indicated in Section 2.2 that it is better not to
simply take the function that returns the makespan of a schedule, but to take the
function that returns both the makespan of a schedule and the number of critical
machines it contains. A partition P is better than partition P’ with respect to this
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cost function if it has a smaller makespan or if the makespans of both partitions are
equal, but the number of critical machines in P is smaller than in P'.

Lemma 5.4. The move neighborhood function has a performance bound of 2 —
Sfor Pm||Cax-

Proof.  Let partition P = (A},Ay,...,A,) define a locally but not globally op-
timal schedule with makespan Cpax, and let P* = (A},A%,...,A},) define a glob-
ally optimal schedule with makespan C},,. To prove the lemma, we show that
Cnax < (2, +1 )C;iax- Without loss of generality, we assume that partition P satis-
fiesly >l >-> [,. Note that [ = Cpax. Let job k be a job in A with the smallest
processing requirement. As P is locally optimal we obtain /; + px > Cpax for all
2 <i < m, which gives

m+1

m
MCnax <l + Y, (li+pi) = Y, pj+ (m—1)pi. (5.2)
i=2 JjeJ
Obviously, Aj contains at least two jobs because Cax > Cry and because the max-
imum processmg requirement of any job is a lower bound on ax- Hence, we have
pi < Cmax Using this result and | m 2ics Pj < Chax» We can derive from (5.2) that

" m—1 " m—1
Cmax < Chax + m Pk < Crax + m Crnax-
This yields (1 — ’”2;11 )Cinax < Cppax» Which implies Crnax < (2—, + 1) Crax- |

As each local optimum for the swap neighborhood function is also a local optimum
for the move neighborhood function, Lemma 5.4 implies that the swap neighbor-
hood function also has a performance bound of 2 — m_zH . Similarly, if we can prove
that this bound is tight for the swap neighborhood function, we obtain that it is also
tight for the move neighborhood function. This result follows from the following
example.

Example 5.1. Suppose that we have m large jobs with processing requirement Km
and Km+ m — 1 small jobs with unit processing requirement, where K > 1 is a given
positive integer. Figure 5.7(a) gives an optimal schedule with makespan Km+ K + 1
for this problem instance. Each machine processes one large job and either K (ma-
chine 1) or K 4 1 (the other machines) small jobs. A swap-optimal schedule is de-
picted in Figure 5.7(b). Machine 1 processes two large jobs, machines 2,3,... ,m—1
process one large job and one small job, and machine m processes Km + 1 small
jobs. The makespan of this schedule is 2Km, which implies that the performance

ratio of this locally optimal schedule is ;. rffl’g' 1 - For K — oo, this ratio approaches

m +1 =2- +1 Hence, the performance ratio of the swap neighborhood is at least

2
2_m+1' =

Consequently, combining Lemma 5.4 and the result of Example 5.1 gives us the
following theorem.

Theorem 5.6. Both the move and the swap neighborhood function have a perfor-
mance ratio of 2 — m_zH Sfor Pm||Cax- O
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machine 1 | Km - - -1 \ Km ‘ Km |
machine 2 | Km [T - - - 1)
machine m-1 | Km - - - 1]
machinemn [ Km  [II[-.- 1
0 “ime 0 Ttime
() (b)

Figure 5.7. (a) Optimal schedule. (b) Locally optimal schedule with respect to swap
neighborhood function.

In the remainder of this section we focus on the worst-case performance of the move
neighborhood function and the swap neighborhood function for Om||Crax.-

Lemma 5.5. The move neighborhood function has a performance bound of
1+\/3m73 for Om||Cpax.
Proof. Let P = (A1,As,...,Ay) with makespan Cnax be a locally optimal solution,
and let P* = (A},A3,...,A;,) with makespan Cj,,, define a globally optimal solu-
tion. Without loss of generality we assume py > p2 > --- > ppandly > 1 > --- >,
where the [;’s refer to partition P. Furthermore, syax gives the maximum speed of
any machine.

Obviously, the total amount of work that has to be processed is given by 2;; 1 Pj
and the total amount of work that can be processed in a schedule of length C is given
by Y, s;C. This means that

m
2 Pi < Y 5iCrna (5.3)

has to hold. Furthermore, as the total amount of work sp,,xC that can be processed by
the fastest machine on a schedule of length C must be at least the largest processing
requirement p; of a job, we have

pl S SmaxC;mx- (5‘4)
We use (5.3) and (5.4) to prove two upper bounds on Cr,x. Using these two bounds,

we next derive the upper bound of 1+‘/‘2‘m73 on the performance ratio of P.

We have /] = Cpax and, as P is a local optimum, also /; + ’;" > Cpax for all
2 <i < m, where k is a job from machine 1 with minimal processing requirement.
Hence, the total amount of work Y/, s;Cmax that can be processed in a schedule of
length Ciax satisfies

m m n
Y siCmax < s1li+ Y (sili+pr) = Y, pj+ (m—1)pi.
i=1 i=2 =1



78 5. Performance Guarantees

In the last equality we use the fact that s;l; gives the work processed by machine
i. Using Equations (5.3) and (5.4) we derive that the right-hand side is at most
Y 8iCorax + (M — 1)Smax - Cax- As a result, we get

m—1)s "
Conax < (1+( zm);“*)cgm
i=15i

We now derive a second upper bound on Cpax. Let 2 < i < m. As mentioned,
we have Chpax = [1 and Chax < ; + sz Hence, we obtain 51Cnax = X jea, pj and
$iCmax < (X jea, Pj) + Pr- As job k is assigned to machine 1, i.e., k € Ay, this gives
§iCax < 272 1 pj for each machine i > 1. By using (5.3) we can now derive
n .
G < 1P < TS
Smax Smax

which yields our second upper bound. Combining both upper bounds on Cpp,x gives
—1
Cmax < min (1 +" ) Chian
X

>n

Si — . . . . .
where x = “=1" L As 1+ ™7 ! and x are decreasing and increasing in x, respectively,
Jsmax

min(1+ m;l ,X) is maximal if 1+ ’";1 = x. Using elementary calculus, this equation

14++/4m—3
2

can be rewritten as x = , which proves the performance bound. a

The following example shows that the bound given in Lemma 5.5 is tight. Note
that this implies that if m is part of the input, i.e., if we consider Q||Cmax instead
of Om||Cmax, then the move neighborhood function has an unbounded performance
ratio. This is in contrast to P||Cmax, for which, according to Theorem 5.6, the move
neighborhood function has a performance ratio of 2.

Example 5.2. Consider the problem instance in which machine 1 has a speed s of
1+‘/‘2‘m_3 and all other m — 1 machines have speed one. Note that the definition of s
implies that m = s> — s + 1. Furthermore, assume that we have m jobs. Job 1 has a
processing requirement of s and all other jobs have a unit processing requirement.
For this problem instance an optimal schedule with makespan one is obtained
by assigning the large job to machine 1 and by assigning one small job to each
of the other m — 1 machines. Now consider the schedule in which the large job is

assigned to machine 2 and all other m — 1 small jobs are assigned to machine 1. Then
machine 1 finishes at time " = 32‘_5 = s— 1, machine 2 at time s, and all other
machines at time zero. Hence, the schedule has makespan Cyax = s. This schedule
is locally optimal with respect to the move neighborhood function: machine 2 is
the only critical machine and moving the large job from this machine to any other
machine does not improve the makespan. Furthermore, it has a performance ratio

of s = 1+‘/§m73. O

We have now proved the following result.
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Theorem 5.7. The move neighborhood function has a performance ratio of
1+\/;1m—3 for Qm”Cmdx O

The performance bound of the move neighborhood function given by Lemma 5.5
directly translates to the swap neighborhood function. To determine the quality of
this bound consider the problem instance of Example 5.2. We modify this problem
instance by adding a single job with unit processing requirement. Then an optimal
schedule is obtained from the optimal schedule given in Example 5.2 by adding
this job to machine 1. The makespan of this optimal schedule is 1 + 1 Moreover,
adding this new job to machine 1 in the move optimal schedule presented results in
an increase in the finishing time of machine 1 from s — 1 to s — 1 + i As s> 1,
the makespan of this schedule is still s. Furthermore, it is swap optimal, as can
be verified. Hence, the performance ratio of the swap neighborhood function is at
1y With s = VI3 Clearly, s— | 8=} . which is the difference
between the performance bound s given in Lemma 5.5 and this lower bound on the
performance ratio, is an increasing function in s, and it approaches 1 for s — oo.
This gives the following result.

least

Theorem 5.8. For Qm||Cmax, the swap neighborhood function has a performance
ratio R that satisfies

14++4m -3

14++4m -3
) )

I1<R<
- = 2

5.3 Non-Approximability Results

Many of the interesting combinatorial optimization problems belong to the com-
plexity class NPO. For a definition of this natural optimization counterpart of
the more well-known complexity class NP of decision problems, we refer to Ap-
pendix B. Let IT be an arbitrary problem in NPO, and let N be a neighborhood func-
tion that we want to use for it in a local search algorithm. Nearly all neighborhood
functions used in practice have the property that they are polynomially searchable.
By this we mean the following.

Definition 5.3. A neighborhood function is said to be polynomially searchable if
in polynomial time we can decide whether a solution is locally optimal and, if not,
construct a better neighboring solution. O

For iterative improvement, being polynomially searchable implies that an imple-
mentation exists for which each iteration runs in polynomial time. Note that this is
obviously the case if the neighborhood is of polynomial size.

Suppose that finding an R-approximate solution for IT is NP-hard for a given
R > 1. Provided that P # NP, this means that iterative improvement using neigh-
borhood function N does not find a solution with performance ratio R in polynomial
time. As it may take iterative improvement an exponential number of steps to reach
a local optimum, this does not directly imply that N has a performance ratio larger
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than R (see also the beginning of Section 5.2.1). The following theorem states that
the claim is nevertheless true. Observe that, by taking R = 1, the theorem yields that
an NP-hard problem will not admit a polynomially searchable exact neighborhood
function.

Theorem 5.9. Let I1 € NPO and let N be a neighborhood function for 11 that is
polynomially searchable. If the problem of finding an R-approximate solution for
I1 is NP-hard for a given R > 1, then N does not have a performance bound of R,
provided that NP # co-NP.

Proof. We prove the result by contradiction. Suppose that approximating I'T within
a factor R is NP-hard and that N has a performance bound of R. We show that for
any decision problem Ilp € NP the complementary problem ITf, obtained from ITp
by reversing the answers is also in NP. This yields a contradiction as it implies
NP = co-NP.

To prove I}, € NP, we need to show that each yes-instance of IIf, has a cer-
tificate that can be checked in polynomial time for validity, where the size of the
certificate is polynomially bounded. As approximating I'T within a factor R is NP-
hard, a polynomial-time algorithm A exists that decides I1p, where A may use an
oracle that returns an R-approximate solution for any problem instance of I'l. Hence,
if for a problem instance I of Ilp we are given a sequence consisting of solutions
that may be returned successively by the oracle during the execution of A on I, then
we can determine in polynomial time whether / is a yes-instance or a no-instance
of I1p. This implies that as a certificate for yes-instances of I}, we can use a se-
quence consisting of solutions that are locally optimal for the problem instances that
are successively given to the oracle, i.e., the ith solution in the sequence is a local
optimum for the ith problem instance given to the oracle. The certificate, which is
of polynomial size, can be checked for validity in polynomial time by substituting
each call of the oracle in .4 by a polynomial-time procedure that checks whether the
corresponding solution in the certificate is a local optimum for the problem instance
given to the oracle. By assumption this polynomial-time procedure exists. O

From the above theorem and Theorem 2.1 it follows that, if NP # co-NP, then the
performance ratio of the k-change neighborhood function cannot be bounded by
2P(") for some fixed polynomial p. Note that this result is weaker than the result of
Theorem 5.4. Theorem 5.4 states that the performance ratio cannot even be bounded
by 22", for instance, and that it also holds in the unlikely case that NP = co-NP.

5.3.1 Exact Neighborhood Function for TSP: An NP-Completeness Proof

Theorems 2.1 and 5.9 yield that, unless NP = co-NP, no polynomially searchable
exact neighborhood function exists for METRIC TSP. In this section we give an
alternative proof of this result. More precisely, we prove that deciding whether
a tour is suboptimal or, equivalently, not locally optimal with respect to an exact
neighborhood function is NP-complete. This implies the claimed result, where the
condition NP # co-NP is replaced by the weaker condition P £ NP. The main reason
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Figure 5.8. A diamond subgraph.

for giving the proof despite the fact that we already have the result is that it is elegant
and serves as a good warm-up for the next chapter.

An outline of the proof is as follows. It is well known that HAMILTONIAN
CYCLE (HC), which is the problem of deciding for a graph whether it contains a
Hamiltonian cycle, is NP-complete. We first prove that the problem does not be-
come easier if in addition to the graph we are also given a Hamiltonian path. Re-
member that a Hamiltonian cycle is a Hamiltonian path in which we return to the
starting node. Hence, we prove that the following problem is NP-complete.

Definition 5.4 [RESTRICTED HAMILTONIAN CYCLE (RHC)]. Given are a graph G and a
Hamiltonian path in G. Is there a Hamiltonian cycle in G? ]

Using this result, we next show that METRIC TSP SUBOPTIMALITY is also NP-
complete, which was our goal.

Definition 5.5 [METRIC TSP SUBOPTIMALITY]. Given are an instance I of METRIC TSP
and a tour t for /. Is T suboptimal? |

Lemma 5.6. RHC is NP-complete.

Proof. Proving RHC € NP is trivial. Hence, to prove the lemma it now suffices to
show that RHC is polynomially reducible from HC. Let G = (V,E) be an arbitrary
graph defining a problem instance of HC. The construction of a corresponding in-
stance of RHC is based on the special-purpose subgraph depicted in Figure 5.8. This
subgraph, which consists of eight nodes, is called a diamond.

In a diamond we identify four special nodes, called N (north), E (east), S (south),
and W (west). We will use diamonds in such a way that if a graph G’ contains a
diamond D, then only these special nodes may be connected to other nodes in the
graph. We now claim that if a graph G’ contains a Hamiltonian cycle c, then for each
diamond D in G’ we have that its nodes are visited by c either in the way depicted
in Figure 5.9(a) or in the way depicted in Figure 5.9(b). The former case is referred
to as north-south mode and the latter as east-west mode.
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(a) (b)

Figure 5.9. (a) North-south mode. (b) East-west mode.

We now focus on proving this claim. Suppose that Hamiltonian cycle c enters
diamond D in node N. We show that following any other path than the one depicted
in Figure 5.9(a) results in a contradiction. If node N is not succeeded by node nw
(north-west), but by ne, then the only way for c to visit nw is via node W. However,
this is not possible because, being in nw, we can neither go to N nor return to W
as this would imply visiting N or W twice. Hence, N is indeed succeeded by nw
in c. Obviously, the only way to proceed from nw is to go to W. Once at node
W, we cannot leave D because then the only way for ¢ to visit sw and ne is by
skipping se. From node sw we have to go to ne because if we chose S this would
make it impossible to visit ne as well as se. From ne we can then only go to E and,
to prevent skipping node se, we conclude the traversal of D by visiting se and S,
successively. By a similar reasoning, it can be verified that if ¢ enters a diamond D
via the south, then D is also traversed as depicted in Figure 5.9(a) and if ¢ enters D
via the east or the west, then D is traversed as depicted in Figure 5.9(b). This proves
our claim.

We now construct for our arbitrary graph G = (V,E) specifying the arbitrary
HC instance the following corresponding graph G' = (V' E'). LetV ={1,2,...,n}.
For each node i € V, we introduce a diamond D; with special nodes N;, E;,S;, and
W;. Except for the last diamond D,,, we connect the south node of each diamond
D; with the north node of the next diamond D;1, i.e., we add the edges {S;,Nit1}
forall 1 <i < nto E'. Finally, we introduce for each edge {i, j} € E the two edges
{‘/Vian} and {‘/VjvEl}

Obviously, the path that visits the diamonds in increasing order and traverses
each diamond from north to south in the way depicted in Figure 5.9(a) gives us
a Hamiltonian path. Hence, to prove that we presented a valid polynomial-time
reduction, it now suffices to show that G has a Hamiltonian cycle if and only if G’
has one. We start with the ‘only-if’ part. Hence, suppose that G has a Hamiltonian



5.4. From Neighborhood Function to Polynomial-Time Algorithm 83

cycle c. Then visiting the diamonds in G’ in the order specified by ¢ and the nodes
inside a diamond in east-west mode yields a Hamiltonian cycle for G'. Next, assume
that G’ has a Hamiltonian cycle c. If ¢ traverses one diamond in north-south mode,
then it must traverse all diamonds in north-south mode as north and south nodes are
not connected to east and west nodes. However, as only n — 1 north-south edges
exist, no Hamiltonian cycle can exist that traverses each diamond in north-south
mode. Hence, we can conclude that ¢ must traverse each diamond in east-west
mode. The order in which these diamonds are visited defines a Hamiltonian cycle
for G. |

Theorem 5.10. METRIC TSP SUBOPTIMALITY is NP-complete.

Proof. Again, proving membership in NP is a trivial task. We now show that RHC
is polynomially reducible to METRIC TSP SUBOPTIMALITY. Let G = (V,E) with
Hamiltonian path p = (v, v,...,v,) define an arbitrary problem instance I of RHC.
If {vi,v,} € E, then we can directly conclude that I is a yes-instance of RHC. Hence,
without loss of generality, we assume that {vi,v,} ¢ E. We transform problem
instance I into the following problem instance of METRIC TSP SUBOPTIMALITY.
The set of cities is given by C =V = {1,2,...,n} and the distance d;; between cities
i to j is defined by 1 if {7, j} € E and by 2 if {i, j} ¢ E. Hamiltonian path p gives
us a tour T with cost n+ 1 because {v;,viy1} € E with 1 <i<nand {vi,v,} ¢ E.
Now, G has a Hamiltonian cycle if and only if tour T is suboptimal. To see this,
suppose that T is suboptimal. A tour T’ then exists with length n. This tour defines
a Hamiltonian cycle in G. Conversely, if G contains a Hamiltonian cycle, then this
cycle determines a tour with length n, which implies that T is suboptimal. This
proves the theorem. |

Corollary 5.1. Provided that P # NP, no polynomially searchable exact neighbor-
hood function exists for METRIC TSP. O

5.4 *From Neighborhood Function to Polynomial-Time
Algorithm

Rewriting Theorem 5.9 gives that if a polynomially searchable neighborhood func-
tion N with performance bound R exists for some given combinatorial optimization
problem IT € NPO, then the problem of finding an R-approximate solution for IT is
not NP-hard, provided that NP # co-NP. One question that arises is whether this
result can be strengthened to the extent that the existence of such an N implies that
the problem of finding an R-approximate solution for IT is easy, i.e., polynomially
solvable. In this section we prove for a special type of combinatorial optimiza-
tion problem that the answer is affirmative for R = 1 and that it is affirmative up to
some arbitrary small error € > 0 for R > 1. In other words, we show for a special
type of combinatorial optimization problem how we can derive from a polynomially
searchable exact neighborhood function a polynomial-time algorithm that solves the
problem and how we can derive from a polynomially searchable neighborhood func-
tion with performance bound R a polynomial-time approximation algorithm with a
performance bound of R + € for any precision € > 0. Besides being polynomial in
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the input size, the (R + €)-approximation algorithm is also polynomial in é After
introducing some terminology in Section 5.4.1 we prove the former result in Sec-
tion 5.4.2 and the latter result in Section 5.4.3.

5.4.1 Preliminaries

For many combinatorial optimization problems it holds that a solution can be viewed
as a subset of a ground set E and that the cost of a solution s C E can be written as
Yeesc(e), where c(e) is the cost of element e € E. This is, for instance, the case for
TSP: define E as the set of all pairs (i, j) of cities and c(i, j) as the distance d;; from
city i to city j. Other examples are STG and UGP. We call such problems linear
combinatorial optimization problems.

Definition 5.6. An instance of a linear combinatorial optimization problem is a pair
(S,c), where each solution in the solution space S C 2% is a subset of a finite ground
set E ={1,2,...,n} and where ¢ : E — Q" assigns a cost to each element e € E.
The cost of a solution s € S is defined by f(s) = Y., c(e). a

Definition 5.7. A linear combinatorial optimization problem I1 is specified by a set
of problem instances as defined in Definition 5.6, and the goal is to minimize for
a problem instance the associated cost function f. Hence, for a problem instance
(S,c) we have to find a solution s* that satisfies f(s*) < f(s) for all s € S. |

Definition 5.8. A linear combinatorial optimization problem IT is called closed un-
der scaling whenever for each problem instance (S, ¢) of IT it holds that if we change
function ¢ : E — Q7 to some other cost function ¢’ : E — Q% then the problem in-
stance remains in IT. |

In this section the focus is on linear combinatorial optimization problems IT that
satisfy the following two properties.

o ITis closed under scaling.

e For each problem instance of Il we can derive in polynomial time a feasible
solution.

It can easily be verified that the above-mentioned linear combinatorial optimization
problems TSP, STG, and UGP all satisfy these two properties. However, this is not
true, for instance, for METRIC TSP because this problem is not closed under scaling.

If a problem is closed under scaling, then this need not necessarily mean that we
can change the cost function of a problem instance in polynomial time. The reason
for this is that an encoding scheme may be applied that does not give c(e) explicitly
for each e € E. To avoid this problem we focus on linear combinatorial optimization
problems that are encoded by a cost-explicit encoding scheme, where a cost-explicit
encoding scheme is defined as follows.

Definition 5.9. An encoding scheme of a linear combinatorial optimization prob-
lem is called cost explicit if the encoding e; € {0, 1}* of a problem instance I = (S, ¢)

(1,2

with underlying ground set E is given by e; = ¢; "¢;”’, where
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(1)

e ¢, is an explicit encoding of the function ¢ : E — Q" which means that it
contains the encoding of ¢(e) for each e € E, and

2

e ¢, is an encoding, either implicit or explicit, of the solution space S.

Furthermore, egl) only depends on S via its ground set E and e§2) is independent of

C. O

5.4.2 Exact Neighborhood Functions

Let IT be a linear combinatorial optimization problem from NPO that satisfies the
two properties given above, and let a cost-explicit encoding scheme be used for
I1. Furthermore, let N be an exact polynomially searchable neighborhood function
for the problem. In this section we present a polynomial-time algorithm, called
Aopr(N), that solves IT.

Let I = (S,c) be a problem instance of I1, where, without loss of generality, we
assume that ¢ is a function to the natural numbers instead of the rational numbers.
Aopr (N) solves I in K = [log,(cmax + 1)] phases, where ¢max is the maximum cost
c(e) of any element e € E. In phase k an optimal solution is derived for the problem
instance Iy = (S, ¢x) that is obtained from 7 by defining the cost cx(e) of an element
e € E as the number represented by the & leading bits in the binary representation
of ¢(e). By adding leading zeros, the binary representation is made equally long for
all e € E, i.e., each binary representation consists of exactly K bits. We implement
a phase by applying iterative improvement with the exact neighborhood function N.
In the first phase an arbitrary solution may be chosen as the starting solution, and
in phase k with k > 2 the solution derived in phase k — 1 is chosen as the starting
solution. Figure 5.10 gives the algorithm in pseudo-code, where f; denotes the cost
function related to problem instance I.

Theorem 5.11. Let IT € NPO be a linear combinatorial optimization problem that
is closed under scaling and for which we can derive a feasible solution in polyno-
mial time. Furthermore, let N be a polynomially searchable exact neighborhood
function for I1. Then the algorithm Aopr (N) given in Figure 5.10 solves I1 in poly-
nomial time in the case that we use a cost-explicit encoding scheme for T1.

Proof. By construction, the number of phases is bounded by K = [log,(¢max + 1)].
Furthermore, because N is polynomially searchable, the individual iterations of the
iterative improvement algorithm that makes up a single phase of A4upr(N) can be
implemented to run in polynomial time. Hence, to prove the theorem, we only have
to show that in an arbitrary phase k the iterative improvement algorithm executed
terminates within a polynomial number of iterations.

Let s; be the solution derived in phase i of Aopr(N), and let sp be the starting
solution of the first phase. Hence, in phase k iterative improvement starts with sz_;
and ends with s;. Because the cost of the solution derived by iterative improvement
decreases in each iteration, it suffices to prove that f(sx—1) — fk(sx) is polynomially
bounded to show that in phase k iterative improvement terminates within a polyno-
mial number of iterations. By defining cld) (e) with e € E as the ith bit in the binary
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algorithm Apr (N)

begin
s := some initial solution;
K :=[log,(cmax + 1)1;
for k:=1to K do
begin
for all e € E do cx(e) := |c(e) - 257K ;
repeat
generate an s’ € N(s);
if f1(s') < fi(s) then s :=s';
until f;(s') > fi(s) forall s' € N(s);
end
end;

Figure 5.10. Algorithm Apr(N) for a linear combinatorial optimization problem I'T
and an accompanying neighborhood function N. ITis closed under scaling and (S, c)
denotes an arbitrary problem instance of IT that is given as input to the algorithm.
Cost function f; relates to problem instance (S, cx).

representation of ¢(e), we obtain that for any solution s the cost fi(s) satisfies

fk(s) { zeex ( ) if k=1
2fi-1(8) + Deesc®(e) if k>2.
Furthermore, we have ¥,.,c(¥)(e) < n, where n denotes the number of elements

in E. Using these two observations and the optimality of s;_; with respect to cost
function f._1, we can derive for k > 2

fi(sk=1) = filsk) =2 (fim1 (Sk=1) = fr1 (s0)) + Y, c®(e) - Zc(k)

ecsi_1 ecsy
and fork =1
filbsien) = fils) = Y, @)= Y W
ecsg_1 ecsy
This proves the theorem. |

5.4.3 Neighborhood Functions with Performance Bound

Theorem 5.11 yields that if a polynomially searchable neighborhood function with
performance bound R = 1 exists for a given linear combinatorial optimization prob-
lem IT that satisfies some properties, then the problem of finding an R-approximate
solution for IT is polynomially solvable. In this section we show that for R > 1 this
result holds up to some arbitrary small error € > 0. More precisely, we proceed as
follows.
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Let IT be a linear combinatorial optimization problem from NPO that satisfies
the same two properties as those given in Theorem 5.11 and for which we use a
cost-explicit encoding scheme. Furthermore, let N be a polynomially searchable
neighborhood function for IT with a performance bound of R. We now present an
algorithm for which we will prove that for any precision € > 0 it (i) has a running
time that is polynomially bounded in both the input size and é and (i) has a perfor-
mance bound of R 4 €.

Let I = (S,c) be a problem instance of IT, and suppose that we perform itera-
tive improvement on /, where we take an arbitrary s € S as a starting solution. By
assumption, s can be derived in polynomial time. We turn iterative improvement
into a polynomial-time algorithm in the following way: we replace the function ¢
in I by ¢/, such that in each iteration the cost of the solution derived by iterative
improvement decreases by at least g and f’(s)/q is polynomially bounded, where
f'(s) is the cost of solution s with respect to the new function ¢’ : E — Q*. The
former property is achieved by defining for any e € E

0[]

The latter property is achieved by defining g as

g= fs)e
2nR(R+¢)
since we then have
/A
I'(s) < fs)+ng _, o <R+1> +n,
q q €

which is polynomially bounded in || and é

Using the polynomial-time algorithm described, we can now construct a
polynomial-time (R + €)-approximation algorithm Ag(N) for I1. Algorithm A¢(N)
proceeds in phases. In each phase the algorithm described is executed, where the
final solution of the previous phase is taken as a starting solution. If the algorithm
arrives at a solution for which the cost is at most half the cost of the solution with
which the phase started, then the algorithm is interrupted and the next phase is ini-
tiated. If the algorithm terminates, i.e., if it arrives at a local optimum, then the
overall algorithm A (N) also terminates. In Figure 5.11 algorithm A¢(N) is given
in pseudo-code.

Lemma 5.7. Let I1 € NPO be a linear combinatorial optimization problem that is
closed under scaling and for which we can derive a feasible solution in polynomial
time. Furthermore, let N be a polynomially searchable neighborhood function for
I1. Then the algorithm A¢(N) given in Figure 5.11 runs in polynomial time in the
case that we use a cost-explicit encoding scheme for I1.

Proof. The number of phases executed by Ag(N) is bounded by log(ncmax ), Where
Cmax 18 the maximum cost ¢(e) of any element e € E. As a cost-explicit encoding
scheme is assumed, this implies that the number of executed phases is polynomially
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algorithm A¢(N)

begin
s := some initial solution;
stop := FALSE;
while —stop do
begin
Sinit 1= 8
q := f(Sinit)€/ (2nR(R +€));
foralle € E do ¢'(e) := [C(;)-I q;
repeat
if f/(s") > f'(s) for all s € N(s) then stop := TRUE;
else
begin
generate an s’ € N(s);
if /'(s") < f'(s) then s := 5,
end
until stop = TRUE or f(s) < f(Sinit)/2;
end
end;

Figure 5.11. Algorithm 4¢(N) for a linear combinatorial optimization problem IT
that is closed under scaling, an accompanying neighborhood function N, and an
arbitrary precision € > 0. (S,¢) denotes an arbitrary problem instance of IT that is
given as input to the algorithm. Cost function f relates to problem instance (S,c),
while cost function f” relates to problem instance (S,c’).

bounded. Combined with the above-derived polynomial running time of each indi-
vidual phase, this proves the polynomial-time running time of Ag(N). |

The next lemma focuses on the quality of the solutions returned by A4¢(N).

Lemma 5.8. Let I1 be a linear combinatorial optimization problem that is closed
under scaling, and let N be a neighborhood function for Il with performance bound
R. Then the algorithm Ag¢(N) given in Figure 5.11 is an (R + €)-approximation
algorithm.
Proof. Let siit, g, ¢, and f' denote the corresponding values at the moment A (N)
terminates, let s be the solution returned by the algorithm, and let s* be an optimal
solution to the problem instance I = (S,¢), which is the problem instance that is
given as input to the algorithm.

According to the definition of function ¢/, we have f(s) < f’(s). Furthermore,
as s is locally optimal for problem instance I' = (S,c¢’) (but not necessarily for I)
and as the neighborhood function has a performance bound of R, by assumption, we
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have f'(s) <R f'(s*). Using this, we can derive

f(s) <R-f'(s RZ[ w <RY (c(e)+q) <R-f(s")+Rng. (5.5)
ecs* ecs*

Moreover, f(sinic)/2 < f(s) holds because otherwise the last phase of the algorithm

would have been interrupted just before setting the variable stop to true. From this

and the definition of g it now follows that ¢ < f(s )nR (R+e)" Combined with (5.5)

this gives f(s) <R f(s*) + f(s) g'¢» Which can be rewritten as f(s) < (R+¢)f(s").
O

Theorem 5.12. Let I1 € NPO be a linear combinatorial optimization problem that
is closed under scaling and for which we can derive a feasible solution in polyno-
mial time. Furthermore, let N be a polynomially searchable neighborhood function
for I with performance bound R. Then the algorithm A¢(N) given in Figure 5.11 is
a polynomial-time (R + €)-approximation algorithm in the case that we use a cost-
explicit encoding scheme for I1.

Proof. The theorem follows directly from Lemmas 5.7 and 5.8. O

5.5 Bibliographical Notes

In Section 5.1 we mentioned bubble sort as an example of an iterative improvement
algorithm with an exact neighborhood function. Knuth [1998] presents an extensive
study on this algorithm and other sorting algorithms. The proposed exact neighbor-
hood for MINIMUM SPANNING TREE is due to Papadimitriou & Steiglitz [1982].

Section 5.1.1 deals with EUCLIDEAN TSP with a bounded number n;, of interior
cities. Deineko, Hoffmann, Okamoto & Woeginger [2004] prove that the problem
is polynomially solvable if ny, = O(logn).

Section 5.2.1 is based on the paper of Chandra, Karloff & Tovey [1999]. Besides
proving the upper bound 44/n on the performance ratio of the k-change neighbor-
hood function when applied to METRIC TSP, they also prove that, for infinitely many

values of n, a lower bound is given by }1\/n for k =2 and by inzlk for k > 3. More-
over, they prove that k-change has a performance bound of O(logn) for EUCLIDEAN
TSP in the m-dimensional space. For standard EUCLIDEAN TSP, i.e., for m = 2, they
derive a lower bound of ¢, Olgoﬁ)';n on the performance ratio of 2-change for some
¢ > 0. We proved Theorem 5.4 by constructing a problem instance of SYMMETRIC
TSP for which k-change induces an arbitrarily large performance ratio. An alterna-
tive problem instance is given by Papadimitriou & Steiglitz [1978]. Besides having
an arbitrarily large performance ratio, their problem instance also has the unfavor-
able property that the number of locally optimal tours with such a performance ratio
is exponential in k. For the special case of METRIC TSP in which the distance be-
tween two cities is either 1 or 2, Khanna, Motwani, Sudan & Vazirani [1998] prove
that 2-change has a performance bound of 3; see Exercise 3. They claim that this
bound is asymptotically tight.

Finn & Horowitz [1979] prove Lemma 5.4, which states that the move neigh-
borhood function for MULTIPROCESSOR SCHEDULING has a performance bound
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of 2 — m_zH. The proof we presented is taken from Vredeveld [2002]. By giving a
problem instance with a performance ratio of 2 — m_ZH , Langston [1982] proves that
this bound is tight for the move neighborhood function and Vredeveld [2002] proves
that it is also tight for the swap neighborhood function. The problem instance given
in Example 5.1 is similar to the one presented by Langston [1982].

The proof of Lemma 5.5 is due to Cho & Sahni [1980]. However, they did not
present it in the context of the move neighborhood function for Qm||Cmax, but to
prove that 1+‘/3m_3 is a performance bound for the list scheduling algorithm when
applied to Om||Cmax. Example 5.2 is presented by Vredeveld [2002]. Vredeveld
[2002] also derives lower bounds on the performance ratio of the swap and move
neighborhood function when applied to Rm||Cnax; see Exercise 4.

Schuurman & Vredeveld [2001] and Vredeveld [2002] propose the push neigh-
borhood function as an alternative to the move and swap neighborhood functions. A
push corresponds to a sequence of moves in the move neighborhood function. They
also analyze the performance ratio of this neighborhood function for Pm||Cmax and
Qm| |Cmax-

We now mention other (classes of) problems for which performance guarantees
for local search have been derived. Performance bounds for satisfiability problems
are proved by Alimonti [1995], Alimonti [1997], Halldérsson & Lau [1997], Hansen
& Jaumard [1990], Hirsch [2003], and Khanna et al. [1998]. Furthermore, Dantsin
et al. [2002] gives an exact neighborhood function for k<SAT. In this satisfiability
problem we are asked to satisfy all clauses or to conclude that this is not possi-
ble, where the number of literals in each clause is at most k. Bylka, Idzik & Tuza
[1999] and Feigle, Karpinski & Langberg [2002] derive performance guarantees of
local optima for MAX-CUT, Boykov, Veksler & Zabih [1998] for MULTIWAY MIN-
IMUM CUT, and Boykov, Veksler & Zabih [2001] and Gupta & Tardos [2000] for
the METRIC LABELING PROBLEM, which is a generalization of MULTIWAY MINI-
MUM CUT. For several facility location problems Arya et al. [2004], Charikar &
Guha [1999], Hassin, Levin & Morad [2003], Kanungo et al. [2002], and Korupolu,
Plaxton & Rajaraman [2000] derive approximation guarantees for local search. For
several spanning tree problems this is done by Briiggemann, Monnot & Woeginger
[2003], Lu & Ravi [1992], and Raghavachari [1997]. The quality of local optima
for the QUADRATIC ASSIGNMENT PROBLEM is studied by Angel & Zissimopoulos
[1998]. Finally, we refer to the performance bounds of local optima that are derived
for INDEPENDENT SET by Khanna, Motwani, Sudan & Vazirani [1998] and for the
weighted and unweighted variants of k-SET PACKING by Arkin & Hassin [1998],
Bafna, Narayanan & Ravi [1996], Berman [2000], Chandra & Halldérsson [2001],
Halldérsson [1995], and Hurkens & Schrijver [1989].

Yannakakis [1997] ‘proved’ a slightly stronger variant of Theorem 5.9 in the
sense that if approximating a problem within a factor R is strongly NP-hard, then the
condition NP # co-NP can be replaced by the weaker condition P # NP. However,
as the ‘proof’ contains an illegal step, we resorted to the variant presented.
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Papadimitriou & Steiglitz [1977] derived the result that, unless P = NP, no poly-
nomially searchable exact neighborhood function exists for SYMMETRIC TSP that
has a constant performance ratio. The proof is similar to the one given in Sec-
tion 5.3.1, which is based on Papadimitriou & Steiglitz [1982]; see also Exercise 6.
Armstrong & Jacobson [2003] prove that, unless P = NP, no polynomially search-
able exact neighborhood function exists for the unweighted version of MAX-2SAT
and for VERTEX COVER. Like Papadimitriou and Steiglitz, they use the theory of
NP-completeness to prove this result. Exercise 7 is taken from the paper of Arm-
strong & Jacobson [2003].

Theorem 5.11 has been proved by Schulz, Weismantel & Ziegler [1995] and
Theorem 5.12 by Orlin, Punnen & Schulz [2004]. The authors show that both al-
gorithm Agpr (N) described in Figure 5.10 and algorithm A4¢(N) described in Fig-
ure 5.11 can be turned into strongly polynomial algorithms, i.e., algorithms with a
running time that is independent of the encoding length of the numbers that appear
in the problem.

Finally, we note that Exercise 5 of this chapter is due to Punnen, Margot &
Kabadi [2003].

5.6 Exercises

1. In Section 5.1 we indicated that sorting a multiset of n numbers ay,as,...,a,
non-increasingly corresponds to finding a permutation 7 of {1,2,...,n} that
minimizes the cost function

f(m) =i ang.
i=1

Furthermore, we showed that we can find a permutation that minimizes f (1) by
performing iterative improvement based on the exact neighborhood function in
which a permutation 7 is a neighbor of permutation 7 if and only if it can be
derived by swapping two adjacent numbers. Consider the two alternative cost

functions
n

g(m) = s(angy — angi-1y)
i=2
and
n i—1

h(m) =YY s(an) — an(j)),

i=2 j=1
where s(x) = 1 if x > 0 and s(x) = 0if x <O.
a) Prove that the cost functions g and /4 are indeed alternatives to cost function

f, i.e., prove that if 7 is globally optimal with respect to minimizing g or
f, then it defines a non-increasing ordering of the numbers.

b) Is the neighborhood function discussed exact for cost function g? And for
h? If so give a proof, if not give a counterexample.
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Consider the following problem.

Definition 5.10 [MAXIMUM CLAUSE-WEIGHTED SATISFIABILITY]. Given are a set U
of binary variables, a set C of clauses over U, and a weight w(c) € NT for each
clause ¢ € C. A clause is satisfied by a given truth assignment if and only if at
least one of its literals is true. Find a truth assignment that maximizes the sum
of the weights of the clauses that are satisfied. O

A possible neighborhood function for this problem is flip, in which a truth as-
signment ¢’ is a neighbor of truth assignment # if and only if #' can be obtained
from ¢ by changing the value of one variable. Prove that the flip neighborhood
function has a performance bound of two.

. Let (1,2)-TSP be the special case of SYMMETRIC TSP in which the distance

between any two cities is either 1 or 2.
a) Prove or disprove that (1,2)-TSP is also a special case of METRIC TSP.

Let T be a locally optimal tour with respect to the 2-change neighborhood func-
tion and let T* be a globally optimal tour. We define U (t) as the set of edges in
tour 7T that have a length of 1.

With each edge e = (3(i),%(j)) € U(t*) we associate an edge ¢’ € U(%) in the
following way. If e is also an edge from 1, which means that j =i+ 1, then
¢’ = e. Otherwise, ¢’ is an edge from {(2(i),7(i+ 1)), (2(j),7(j + 1))} that has a
length of 1.

b) Prove that edges (1(i),%(i + 1)) and (2(j),%(j + 1)) cannot both have a
length of 2.

Let V be the set of edges from 7 that are mapped to an edge from U(t").
¢) Prove that |V| > |U(t")|/2.

d) Prove that the 2-change neighborhood function has a performance bound
of ; for (1,2)-TSP.

. Consider Rm||Cmax and let pmax = max; j p;; denote the maximum process-

ing requirement for a given problem instance and let C};,, denote the optimal
makespan.
a) Show that the move neighborhood function has a performance ratio of at
least pmax /Crnax-
b) Show that the swap neighborhood function has a performance ratio of at
least (Pmax — 1)/Cprax-

c) Show that for m = 2 the swap neighborhood function has a performance
ratio of at least n — 1.
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5. Consider SYMMETRIC TSP. For a given problem instance I = (S, f) we define
avgr as the average length of all tours, i.e.,

T
=3O
TeS |S |
In this exercise it is our goal to prove that a locally optimal tour has length at
most avg; for the 2-change neighborhood function, but that it may have length
larger than avgy for the node-insertion neighborhood function.

a) Prove that

2
avg| = n_1 i-jgc dl/;
i#i

where C = {0, 1,...,n— 1} denotes the set of cities in problem instance /.
For a given tour T and a pair ¢; = {t(i),7(i+ 1)} and e; = {t(j),t(j+1) } of non-
adjacent edges in T, we define A;(e1,e2) as the change in tour length resulting
from a 2-change that replaces e; and e; with two new edges. It can be verified
that

Ax(er,€2) = (i) + de(in)a(j1) = dei) w(i+1) ~ de(j) 2+
For a given edge ¢; we define Vz(e;) as the set of edges in 7 that are not adjacent
to ¢;. Furthermore, we define

Acle)) = Y, Acleie;)
EjEVT
and

o = 2 dkj.
jec
ik
b) Prove that each edge ¢; = {t(i),T(i+ 1)} in 7T satisfies
Ac(ei) = 61(1') + 61(i+1) —(n— 2)d‘c(i);r(i+1) - f(0).
¢) Prove that

ZAT(e) =4 Z dij—(2n=2)f(7).
ecT i,jeC
oy
Let T be a locally optimal tour with respect to the 2-change neighborhood func-
tion.

d) Use (c) to prove that (%) < avgy.

In the remainder of this exercise we will prove that the length of a locally opti-
mal tour with respect to the node-insertion neighborhood function may be larger
than avg;. Consider the problem instance depicted in Figure 5.12. The problem
instance consists of ten cities numbered from 0 to 9 and it has a distance matrix
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Figure 5.12. Problem instance discussed in Exercise 5. Edges with length O have
been omitted.

6.

that is defined by
1 if j=(i+1) mod 10,
dij = 3 if j=(i4+2) mod 10,
0 otherwise.

e) Prove that tour T = (0,1,...,9) is locally optimal with respect to the node-
insertion neighborhood function.

f) Prove that tour 1 defined in (e) satisfies f(%) > avgy.

Let I be an arbitrary problem instance of EUCLIDEAN TSP, and let I’ be the

problem instance obtained from I by replacing the distance matrix d by d’ with
— 2

d! ;=dj;.

a) Prove or disprove the following claim: if T is an optimal tour for /, then it
is also an optimal tour for I'.

The following exercises are concerned with SYMMETRIC TSP.

b) Indicate how to adapt the proof of Corollary 5.1 to turn it into a proof of
the result that, unless P = NP, no polynomially searchable neighborhood
exists for SYMMETRIC TSP with a performance bound of 27() for some
fixed polynomial p.

c¢) Give a variable-depth algorithm for SYMMETRIC TSP that is based on the
2-change neighborhood function.

d) What can you say about the performance ratio of the neighborhood func-
tion of (c)?

. In Exercise 2 we defined MAXIMUM CLAUSE-WEIGHTED SATISFIABILITY. Let

MAXIMUM SATISFIABILITY be the unweighted variant of this problem, i.e., in
MAXIMUM SATISFIABILITY (MAX-SAT)! we are asked to maximize the number
of satisfied clauses. Consider the following two decision problems.

Definition 5.11 [saTisFIABILITY]. Given are a set U of binary variables and a set
C of clauses over U. A clause is satisfied by a given truth assignment if and

UIn the literature MAX-SAT can also refer to the weighted variant of the problem.
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only if at least one of its literals is true. Does there exist a truth assignment that
satisfies all clauses? o

Definition 5.12 [MAX-SAT SUBOPTIMALITY]. Given are an instance I of MAX-SAT
that consists of m clauses and a truth assignment ¢ for [ that satisfies m — 1
clauses. Is ¢ suboptimal, i.e., does there exist a truth assignment that satisfies
all m clauses? O

a) SATISFIABILITY is known to be NP-complete. Prove that MAX-SAT SUB-
OPTIMALITY is NP-complete by giving a reduction from this NP-complete
problem.

b) What is the relation of this result to local search?
. Consider algorithm 4¢(N) described in Figure 5.11, and suppose that we use

an R'-approximation algorithm to derive an initial solution for 4¢(N), where
R' > R. How does this affect the time complexity of the algorithm?



Time Complexity

One way of tackling an intractable NP-hard problem is by applying local search,
in particular, iterative improvement. Instead of solving the problem to optimality,
iterative improvement only provides a local optimum. In other words, the algorithm
solves the relaxed problem in which the goal is not to find a global optimum, but to
find a local optimum. This local search problem is formalized by the following two
definitions.

Definition 6.1. An instance of a local search problem is a triple (S, f,N), where
(S,f) is an instance of a combinatorial optimization problem and N : S — 25 is a
neighborhood function on S. |

Definition 6.2. A local search problem Il s is specified by a set of problem in-
stances and it is either a minimization or a maximization problem. The problem is
to find for a given instance (S, f,N) a locally optimal solution § € S. For a minimiza-
tion problem, this means that () < f(s) for all s € N(s), and for a maximization
problem it means that f($) > f(s) forall s € N(s). |

To guarantee that iterative improvement is suitable for tackling problem instances of
realistic size, it is important to determine its time complexity. If the running time is
bad, i.e., exponential, then an immediate question is whether this large running time
is caused by the simplicity of iterative improvement or by the inherent intractabil-
ity of the local search problem it solves. Note that a local search problem cannot
be harder than the underlying combinatorial optimization problem. In this chapter
we both study the time complexity of iterative improvement and the computational
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complexity of local search problems. We assume the reader to have some experi-
ence in applying the theory of NP-completeness. For a brief overview we refer to
Appendix B.

We start in Section 6.1 by studying the computational complexity of local search
problems. The section is based on the paper of Yannakakis [1997], who gives an
excellent presentation of the complexity theory for local search problems introduced
by Johnson, Papadimitriou & Yannakakis [1988]. In Section 6.2 we then discuss
the time complexity of iterative improvement for several local search problems. We
stress that if iterative improvement has a polynomial running time for a local search
problem, then this local search problem is easy by definition. However, if iterative
improvement has an exponential running time, then this need not mean that it solves
a hard local search problem.

6.1 Computational Complexity of Local Search Problems

To distinguish easy decision problems from hard ones, the theory of NP-
completeness has been developed. In a nutshell, the idea of this theory is as fol-
lows. A class NP of decision problems is defined that contains the decision variants
of many apparently hard and interesting combinatorial optimization problems. To
relate the complexity of two problems in NP, polynomial-time reductions are in-
troduced. If a problem IT is polynomially reducible to problem IT, then IT is at
least as hard as I, which means that a polynomial-time algorithm for IT" can only
exist if it exists for II. The problems in NP to which all problems in this class
are polynomially reducible are called NP-complete. These problems are the hardest
problems in NP since they only allow an efficient polynomial-time algorithm if such
an algorithm exists for all problems in NP. This is very unlikely as no polynomial-
time algorithm has been found for an NP-complete problem despite the enormous
amount of effort that has been spent by many experts on finding one.

A similar strategy is used to identify hard local search problems for which it is
very unlikely that they can be solved by a polynomial-time algorithm. First of all,
we define a complexity class, called PLS, which contains local search problems that
are specified by a combinatorial optimization problem from NPO and a ‘reasonable’
corresponding neighborhood function; see Appendix B for the definition of NPO.
Next, we present a reduction to express that a local search problem is at least as
hard as another given local search problem. Using this reduction, we can identify
the hardest problems in PLS. Because no polynomial-time algorithm is known for
any of these PLS-complete problems, as they are called, it is commonly believed
that no such algorithm exists for these problems.

We now further elaborate on this theory. Let IT be a combinatorial optimization
problem from NPO and let N be a neighborhood function for it. A successful ap-
plication of local search for this problem depends on whether it is easy to generate
an initial solution and to check whether a solution is locally optimal and, if not, to
derive a better neighbor. In terms of iterative improvement, this means that both
the initialization and each single iteration of the algorithm can be implemented to
run in polynomial time. The number of iterations, however, may be exponential.
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The class PLS contains all local search problems in which the properties described
are satisfied. Note that we have already encountered the properties in Sections 5.3
and 5.4.

Definition 6.3. LetII; g be a local search problem and let I'T be the underlying com-
binatorial optimization problem. Local search problem IIrg is in the class PLS
(Polynomial-time Local Search) if IT € NPO and if two polynomial-time algorithms
A and B exist that satisfy the following properties.

e For a problem instance (S, f,N) of I, algorithm A returns a solution s € S.

e For a problem instance (S, f,N) of Il.s and a solution s € S, algorithm B
decides whether s is a local optimum and, if this is not the case, it returns a
neighboring solution with better cost.

O

The following definition specifies a PLS-reduction by which we can relate the com-
plexity of two local search problems. From the definition it follows directly that if
local search problem Iy g is PLS-reducible to local search problem H’LS, then the
existence of a polynomial-time algorithm for I} ¢ implies the existence of such an
algorithm for Iy s. In other words, HLS is at least as hard as I'l; 5. Furthermore, it
can be verified that PLS-reductions are transitive, which means that if Il g is PLS-
reducible to I} ¢ and T1j g is PLS-reducible to IT{g, then IT;s is also PLS-reducible
to IT{ g.

Definition 6.4. Local search problem Iy g is PLS-reducible to local search problem
IT] 5, denoted by ITy g o< ITj g, if two polynomial-time algorithms @ and @ exist that
satisfy the following properties; see also Figure 6.1.

o Algorithm @; transforms a problem instance / of I'l; 5 into a problem instance
01 (1) of HLS'
e Algorithm @, maps a problem instance I = (S, f,N) of Il.s and a solution
s € § with @i (I) = (5', f/,N') to a solution s € S.
e For a problem instance I of I s, we have thatif s’ € §' is a local optimum for
o1(1) = (8',f',N'), then @2(1,s") is a local optimum for 1.
The pair (¢1,¢2) is called a PLS-reduction. |

We note that the definition of ¢, can be weakened. For ¢, it suffices that instead of
all solutions in §’, only the local optima are mapped to a solution in S. However, if
we have Il g € PLS, then we can easily transform such a @, into an algorithm that
satisfies Definition 6.4 by mapping all solutions that are not in the domain of the
restricted @, to the solution returned by the polynomial-time algorithm A defined
in Definition 6.3. Analogously to NP-completeness, we define the notion of PLS-
completeness to indicate the hardest problems in PLS.

Definition 6.5. A local search problem in PLS is PLS-complete if each problem
I1; s € PLS is PLS-reducible to it. O
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Figure 6.1. Example of algorithm @, for mapping solutions from S’ to solutions
from S. The squares indicate the local optima.

In Sections 6.1.1 we prove our first PLS-complete problem, called CIRCUIT/flip.
Once we have this result we only have to prove for a given problem Iy g that
CIRCUIT/flip is PLS-reducible to it to conclude that Il; g is PLS-complete. This
is used in Section 6.1.2 to prove that UNIFORM GRAPH PARTITIONING with the
Kernighan-Lin neighborhood function presented in Section 2.5 is PLS-complete.
We note that PLS-reductions used for proving PLS-completeness results are gen-
erally much more intricate than the polynomial-time reductions used for proving
NP-completeness results. To gain an impression of how a PLS-reduction works,
we recommend the reader to study at least the proof of Theorem 6.5, in which we
present a relatively simple and elegant PLS-reduction. In Appendix C we give a list
of local search problems that have been proven to be PLS-complete.

Let NPCO contain all NP-hard problems from NPO. When determining the
complexity of solving some combinatorial optimization problem from NPO to op-
timality, one generally aims to decide whether the problem is in PO or in NPCO.
It is therefore interesting to relate the class PLS and the subclass of PLS-complete
problems to the classes PO, NPO, and NPCO. This is the focus of the remainder of
this section.

First we show that PLS C NPO. Let [I. s be an arbitrary local search problem
in PLS. Problem Il s can be formulated as a minimization problem IT € NPO by
defining an instance (S,f’) € I1 for any instance (S, f,N) € IILs, such that cost
function f' : S — {0,1} satisfies f'(s) = 0 if s is locally optimal and f’(s) = 1
otherwise. The existence of algorithm B as defined in Definition 6.3 for I'l; s implies
that f’ is computable in polynomial time. From this it follows that IT is indeed a
problem from NPO. Moreover, I s and IT are clearly equivalent. As a result, we
get PLS C NPO.

We now show that PO C PLS. Let I'T € PO and let .4 be an optimal polynomial-
time algorithm for IT. Without loss of generality we assume that IT is a minimiza-
tion problem. Then we define minimization problem I'" € PO such that any instance
I=(S, f) of I1 corresponds to an instance (S, /') of IT', where f’(s) = 0 if solution s
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is optimal with respect to cost function f and f’(s) = 1 otherwise. If we define a
neighborhood function for IT in such a way that each solution has only one neigh-
bor, namely the solution returned by .4, then we obtain a local search problem that is
equivalent to I'1. Furthermore, the problem is in PLS. Algorithm A in Definition 6.3
can be defined as .A and algorithm B in this definition can be realized by first com-
paring the cost of the solution given by .4 with the cost of a given solution s and by
then returning the optimal solution derived by A if the latter cost is larger. Hence,
we now obtain the following result.

Theorem 6.1. The complexity classes PO, PLS, and NPO satisfy
PO C PLS C NPO.
O

From the relation PLS C NPO it follows that a PLS-complete problem is not
harder than any NP-hard problem in NPO, as will now be shown. Suppose that a
polynomial-time algorithm exists for an NP-hard problem in NPCO. We then have
P = NP. By Theorem B.2 in Appendix B this yields that all problems in NPO
are polynomially solvable, including those in PLS. To substantiate the intractabil-
ity of PLS-complete problems, a more interesting question is whether PLS-complete
problems are also at least as hard as the problems in NPCO. If the answer were to be
affirmative, then the existence of a polynomial-time algorithm for a PLS-complete
problem would be as unlikely as the existence of such an algorithm for a problem
in NPCO. However, this is not the case because the following theorem states that
if NP # co-NP, then a PLS-complete problem is not NP-hard. Hence, in the un-
likely case that PLS-complete problems turn out to be polynomially solvable, this
still does not imply that the problems in NPCO are also solvable in polynomial time.
Figure 6.2 depicts the relations between the different complexity classes.

Theorem 6.2. If NP # co-NP, then none of the problems in PLS are NP-hard.
Proof.  The result can be proved in a similar way as Theorem 5.9. Note that
Theorem 5.9 easily follows from this theorem. Suppose that a problem Il g € PLS
is NP-hard. We show that this contradicts NP # co-NP by showing that it implies
that, for any decision problem Ilp in NP, the complementary problem ITf, obtained
by reversing the answers in I'lp is also in NP.

As Il g is NP-hard, a polynomial-time algorithm A exists that decides Ilp,
where .4 may use an oracle that, for any problem instance of Ils, returns a lo-
cal optimum. Hence, if for a problem instance / of IIp we are given a sequence
consisting of local optima that may be returned successively by the oracle during
the execution of 4 on 7, then we can determine in polynomial time whether / is a
yes-instance or a no-instance of ['lp. As a result, we can use this sequence of locally
optimal solutions as a certificate for yes-instances of I1f,. Furthermore, the certifi-
cate, which is of polynomial size, can be checked in polynomial time for validity by
substituting each call of the oracle in A by a polynomial-time procedure that checks
whether the corresponding solution in the certificate is a solution to the problem
instance of Il s given to the oracle. The existence of polynomial-time algorithm
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NP-hard problems
(TSP,STG,MGC,...)

PLS-complete problems

Figure 6.2. Positioning of the classes PO, PLS, and NPO in the case that P # NP,
NP # co-NP, and PO # PLS.

B in Definition 6.3 shows that this polynomial-time procedure exists. This proves
I1§, € NP, which completes the proof of the theorem. a

6.1.1 *First PLS-Complete Problem: A Starting Point

Suppose we want to apply local search to the problem of finding an integer s with
0 < < 2" for which a given function f: {0,1,...,2" —1} = {0,1,...,2" — 1} is
minimized. We can use the neighborhood function in which s’ € {0,1,...,2" — 1}
is a neighbor of s if s’ can be obtained from s by flipping exactly one of the n bits in
the binary representation of s. The corresponding local search problem, formulated
in terms of Boolean circuits, is the first problem that has been proved to be PLS-
complete.

Boolean circuits are theoretical counterparts of the digital circuits from which
computers are made. They compute Boolean functions f: {0,1}" — {0,1}" and,
conversely, each Boolean function is computed by a circuit.

Definition 6.6. A Boolean circuit is a directed acyclic graph D = (V,A). The node
set V consists of z input nodes and |V| — n gates. The input nodes have indegree
zero and are labeled by the binary variables x1,x2,...,x,. The labels of the gates are
taken from the set {A,V,—} of Boolean functions. The gates with outdegree zero
are called the output nodes and they are additionally labeled by the binary variables
Y1,Y2,-.-,Ym. Boolean circuit D computes a Boolean function f : {0,1}" — {0,1}"
by deriving for given values of the input variables x1,xa, .. ., x, corresponding values
for the output variables y1,y2, ...,y in the following way.

Let [ be the label of a gate g. If [ is given by —, then the value of g is one
minus the value of the node from which the only incoming edge of g is incident.
Next, suppose that [ &£ { ,V}. Then g has exactly two incoming edges. Let 01,02
be the values of the nodes from which these two edges are incident. If g is labeled
A, then it is assigned the value one if 01 = 05 = 1 and it is assigned the value zero,
otherwise. If g is labeled V, then it is assigned the value zero if 0] = 0, =0 and it
is assigned the value one otherwise. The size of Boolean circuit D = (V,A) is given
by the number of nodes in V. |
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Figure 6.3. Boolean circuit computing the function ((x1 V x2) A —x3) Vx;. The
numbers below the nodes indicate their value in the case where the input is given by
0,1,1).

Example 6.1. Figure 6.3 depicts a Boolean circuit. It consists of three input nodes
(x1,x2,x3) and four gates. Of the four gates, only the rightmost node is an output
node. In the figure we indicate the values of the nodes in the circuit for the case
where the input is given by (x1,x2,x3) = (0,1,1). Obviously, the circuit computes
the Boolean function ((x; Vx2) A—x3) V xj. O

By interpreting the input and output vectors as two numbers written in binary no-
tation, i.e., by interpreting the input as 7, 2/~1x; and the output as 37, 2""ly;, a
Boolean circuit can compute an integer function. Hence, the local search problem
mentioned above can be formalized by the following definition. We note that the
Hamming distance of two strings s and s’ of equal size, denoted by H (s,s'), is given
by the number of positions in which s and s’ differ.

Definition 6.7 [circurt/flip]. Given is a Boolean circuit D with n input nodes
X1,X2,...,%, and m output nodes y1,y2,...,Vn. The neighborhood function, called
flip, is based on the solution space {0,1}" containing all possible input vectors
(x1,X2,---,X,) of the circuit. A solution s is a neighbor of solution s’ if s and s/
have a Hamming distance H(s,s") of one. Find a solution § that is locally optimal
with respect to the cost function

m .

f@ =2,

i=1
which gives the integer interpretation of the output of Boolean circuit D on input
§. In MIN-CIRCUIT/flip it is our goal to minimize the cost function, while in MAX-
CIRCUIT/flip it is our goal to maximize the cost function. ]

It can easily be verified that both MIN-CIRCUIT/flip and MAX-CIRCUIT/flip belong
to the class PLS. The following lemma states that they are also equally hard.

Lemma 6.1. MIN-CIRCUIT/flip and MAX-CIRCUIT/flip are PLS-reducible to each
other.
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Proof. 'We only define a PLS-reduction (@, ;) from MIN-CIRCUIT/flip to MAX-
CIRcUIT/flip. A PLS-reduction from MAX-CIRCUIT/flip to MIN-CIRCUIT/flip can
be defined similarly.

Let Boolean circuit D define an arbitrary problem instance of MIN-CIRCUIT/flip,
and let f be the cost function computed by D. Algorithm @; constructs an instance
of MAX-CIRCUIT/flip, i.e., a Boolean circuit @; (D), as follows. For each output
node v in D algorithm @; adds a new node V' that is connected to D via an arc
from v to v/ and that has label —. This gives Boolean circuit @;(D) that flips the
value of each output node of D. Hence, ¢;(D) computes 2 — 1 — f(s) on input
s € {0,1}". Obviously, the local and global optima of D for MIN-CIRCUIT/flip are
the same as the local and global optima of ¢ (D) for MAX-CIRCUIT/flip. Hence,
(@1,92) defines a valid PLS-reduction, where algorithm @, is as defined above and
@2 is the identity, i.e., @2 returns s for all s € {0, 1}". O

The following theorem is useful for proving that MIN-CIRCUIT/flip and MAX-
CIRCUIT/flip are PLS-complete. We note that {0, 1} represents the set of all binary
vectors (or strings) containing one or more entries.

Theorem 6.3. If f : {0,1}T — {0,1}" is a function that is computable in poly-
nomial time, then a polynomial-time algorithm exists, which for any n derives a
Boolean circuit that computes f(s) for any string s € {0,1}" of length n. As the
algorithm runs in polynomial time, the derived Boolean circuits are of polynomial
size.

Proof.  Suppose that for some given language L we have an algorithm that, when
implemented on a Turing machine, decides L in O(¢(n)) time, where n denotes
the length of the input string. Then, Theorem 9.25 of Sipser [1997] states that for
each n a Boolean circuit exists of size O(¢>(n)) that decides L on inputs of length
n. He proves this result by showing how a Boolean circuit can be constructed that
simulates the computation of the Turing machine on inputs of a fixed length. This
construction can be done in time polynomial in 7(r). A similar proof can be used to
show that this theorem holds. a

We are now able to prove our first PLS-complete problem. Although the result is
rather impressive, the proof is relatively simple.

Theorem 6.4. MIN-CIRCUIT/flip and MAX-CIRCUIT/flip are both PLS-complete.
Proof. LetIlLs be an arbitrary minimization problem in PLS. We show that Iy g is
PLS-reducible to MIN-CIRCUIT/flip. In a similar way it can be proved that any maxi-
mization problem in PLS is PLS-reducible to MAX-CIRCUIT/flip. As by Lemma 6.1
MIN-CIRCUIT/flip and MAX-CIRCUIT/flip are PLS-reducible to each other, this im-
plies that both problems are PLS-complete.

Preliminaries. We first introduce some notation and some assumptions we can make
regarding local search problem Il 5. We can assume that problem instances and so-
lutions are described by strings over the alphabet {0, 1}. The encoding of a problem
instance [ as a string in {0,1}% is denoted by ¢;. Remember that the size |I| of
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instance I is given by the number of bits in e;. Analogously, e; denotes the encoding
of a solution s.

The underlying combinatorial optimization problem of a problem in PLS is by
definition in NPO. Furthermore, the size of a solution of a problem in NPO is, also
by definition, polynomially bounded in the input size. This means that a polynomial
p exists, such that the size of a solution of an arbitrary problem instance I of Il g is
bounded from above by p(]I]). Hence, since we are allowed to switch to a different
encoding scheme for solutions as long as the resulting increase in the size of the
solutions is polynomially bounded in |I|, we may assume without loss of generality
that

e a polynomial p exists, such that the size of a solution of an arbitrary problem
instance [ is exactly p(|I]) and

e for any two different solutions s and s” of some problem instance /, the Ham-
ming distance between e, and ey is at least two.

The first property can be ensured by adding a one behind the encoding of a solution
s followed by p(]I]) — es — 1 zeros, where p(|I]) is strictly larger than the size of
any solution of /, i.e., at least the one is appended behind a solution. The original
encoding can easily be derived from the new one by removing the uniquely defined
tail 100...0. The second property can be ensured by duplicating each bit in the
encoding of a solution. In the following, we write p instead of p(|I]) if I follows
from the context.

Proof strategy. We now return to proving Il g e« MIN-CIRCUIT/flip. Instead of deriv-
ing this result directly, we prove it via an intermediate artificial problem. This means
that we define a local search problem IT and prove Iy g o< IT o« MIN-CIRCUIT/flip.
Problem IT contains the same set of problem instances as Il g, and it is formulated
in terms of the encoding of its problem instances. For a problem instance / with
encoding e; it asks for a fixed-length binary string s € {0,1}?7*2 that minimizes
f(er,s), where f:{0,1}* — N or, equivalently, f : {0,1}T — {0,1}*, is a polyno-
mially computable cost function that will be defined below. Furthermore, IT has the
same solution space and neighborhood function as MIN-CIRCUIT/flip. This means
that the solution space is given by all strings from {0, 1}2er2 and that solutions s
and s" are neighbors of each other if and only if H(s,s’) = 1. Obviously, we have
IT € PLS. We first prove I e MIN-CIRCUIT/flip. Afterwards, we show that also
Iy s o< IT holds, which yields I} g =< MIN-CIRCUIT/flip.

Proof of IT o< MIN-CIRCUIT/flip. Consider local search problem Il. As f is polyno-
mially computable, Theorem 6.3 yields that a polynomial-time algorithm 4 exists
that for any n derives a polynomial-sized Boolean circuit that computes f for strings
of length n. We now define algorithm ¢, in the PLS-reduction (@;,®;) from IT to
MIN-CIRCUIT/flip as follows. For any problem instance 7 of I1, it first runs .4 with
inputn = |I|+2p+2. This gives a Boolean circuit for computing f for any problem
instance with the same size as I. By substituting the bits of ¢; in the first |I| inputs
of the circuit, we obtain a Boolean circuit that computes f(ey,s) for any solution
s € {0,1}2P*2, This Boolean circuit is returned by ¢;. We note that an input node
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of a Boolean circuit is by definition a variable and not a constant. However, it is easy
to eliminate input nodes with label O or 1 from the circuit. In this way, ¢; defines
a problem instance of MIN-CIRCUIT/flip with the same global and local optima as
problem instance / of T1. In other words, (¢1,92) defines a PLS-reduction if @ is
as defined above and @, is given by the identity.

Proof of IlLg o< I. In the remainder of the proof we construct a PLS-reduction
(@1,92) from I g to 1, where we still have the freedom to fill in the details in the
definition of the cost function f of Il. We only have to take care that f is computable
in polynomial time. As mentioned above, I1; s and IT have the same set of problem
instances. Therefore, it is not surprising that we simply define @; as the identity.
Nevertheless, we still write both I and @; (1) to distinguish between whether [ refers
to a problem instance of Il g or to a problem instance of IT. We now discuss algo-
rithm . A solution s of @; (/) is a binary string of length 2p + 2 and is considered to
consist of three parts. The first two parts are both of length p and refer to encodings
of solutions of Iy s. The last part consists of only two bits and has the interpretation
of the state of solution s. We define R = {uu00 | u is the encoding of a solution of I}
as a subset of the solutions of @;(I). Based on the obvious one-to-one correspon-
dence between R and the solutions of I, we let @, return the solution with encod-
ing u on input uu00 € R and solution A(I) otherwise, where algorithm A is as de-
fined in Definition 6.3. This concludes the definition of the PLS-reduction (¢;,®2).
In the remainder of this proof, we mean the encoding e, of solution u when we
refer to a solution u of I. By using this convention, we can for instance write
R = {uu00 | u is a solution of I}.

We now show that the described PLS-reduction is valid, where we exploit the
freedom to choose the cost function f. Let T, (7) be the transition graph of ¢; ().
We say that a path froms € Rto s’ € Rin Ty, (1) is direct if no intermediate solutions
in this path are in R. We define f in such a way that the transition graph satisfies the
following two conditions.

e Condition 1. Ty, (5 contains a direct path from s = uu00 € R to s'=ww00 €R
if and only if w = B(u), where B is as defined in Definition 6.3; see Figure 6.4.
The ‘if’ part implies the following. Let y be a sequence of solutions for /
that are successively obtained in an execution of the iterative improvement
algorithm if it uses algorithm B in each iteration to move to a better neighbor.
Then, a path in T, () exists for which it holds that the removal of all solutions
that are not in R results in the sequence of solutions from R that corresponds
to sequence Y.

e Condition 2. For any solution s ¢ R, transition graph Ty, (1) contains a path to
a solution s’ € R.

The first condition yields that if s = uu00 € R is a local optimum for @; (), then
@2(1,s) = u is a local optimum for /. Furthermore, it follows from the second con-
dition that the local optima of @; (I) form a subset of R. Hence, if s is locally optimal
for @1 (), then @2(1,s) = u is locally optimal for I. As a result, proving the two con-
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I To,m)
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Figure 6.4. The correspondence between an arc (u,w) in transition graph 7; with
w = B(u) and a direct path in transition graph Ty, (1) from the solutions uu00 € R to
ww00 € R. The only depicted solutions from R are the dark shaded ones, i.e., uu00
and ww00.

ditions suffices to show that (@1,®2) is a valid PLS-reduction. We note that for our
purpose we do not need to prove the only-if part of the first condition. However, this
result will be useful later on when we introduce tight PLS-reductions to analyze the
time complexity of iterative improvement.

Definition of cost function f. It now remains to be shown that a cost function f
can be constructed, such that the above two conditions are satisfied. To define f,
we need the following definition. Let u and w with u # w be two arbitrary binary
strings of length p. Then we can change u into w by flipping H (1, w) bits in u. We
define V(u,w) as the set of H(u,w) strings that are obtained if we change u into w
by flipping the bits in which u differs from w in increasing order of their position.
By definition V(u,w) contains w but not u. Below we define f(s) for some of the
strings s € {0, 1}21’+2. These strings are called well-structured. All other strings are
called unstructured. In the definition of f, we let u € {0,1}? represent a solution of
I and we let g(I,u) be defined as the cost of solution u in problem instance I of Iy s.

o f(er,uu00) = (2p +4)g(l,u),
o f(er,uv00) = (2p+4)g(I,w)+ (p+2)+H(v,w)+2,where v € V(u,w) with
w = B(u),
o f(er,uwl0) = (2p+4)g(I,w)+ (p+2)+ 1 withw=B(u),
o f(er,vull) = (2p+4)g(Il,u)+ H(u,v) +2, where v € {0,1}” is an arbitrary
string of length p, and
o fler,uul0) = (2p+4)g(l,u) + 1.
For any other (unstructured) string s, we define the cost f(e;,s) such that it is larger
than the cost of any well-structured string. Note that this implies that transition

graph T, (7) does not contain an arc from a well-structured solution to an unstruc-
tured solution. Details are provided after the proof of Condition 1.
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Proof of Condition 1. Let us first prove the ‘if’ part of Condition 1. Suppose that
w = B(u) exists for a given u. Then the following direct path in Ty, (1) exists from
s = uu00 to s' = ww00; see Figure 6.4. First of all, the path changes the second part
of s one bit at a time until it becomes equal to w. This means that the first H (u,w)
solutions in the path are of the second type uv00 with v € V (u,w), where the last of
these solutions is given by uw00. Next, the path successively visits solutions uw10
and uwl1. It then changes the first part of uw11 one bit at a time into ww11 via the
fourth type of solutions defined above. The last two solutions on the path from s to
s" are wwl0 and s’ = ww00. It can be verified that each solution in this direct path
has a lower cost than its predecessor. This proves the ‘if” part of Condition 1.

Next, consider the ‘only-if” part. Assume that a direct path exists from s to s'.
Then this path must have the form that we just described, i.e., it first changes the
second part of s = uu00 into w with w = B(«) and next it transforms uw00 via uw11
into s = ww00. This can be verified as follows. Changing the state of s = uu00
cannot improve the cost of a solution. Furthermore, changing one bit in the first part
u of s transforms it into a string v that is not a solution of / because by assumption
any two solutions in / have Hamming distance of at least two. As a result, we can
only obtain a solution with a lower cost than s if we change its second part. This can
only be done via the second type of solution uv00 with v € V (u,w), where w = B(u).
Using similar arguments it can be shown that the remainder of the path also has to
be of the described format. This proves that Condition 1 indeed holds.

Proof of Condition 2. Consider the second condition, which states that for any s ¢ R,
transition graph Ty, (5 contains a path from s to a solution s’ € R. The condition
is satisfied for well-structured solutions as they are all on a path in 7, ;) from a
string s € R to some other string s' € R. We now show that it is also satisfied for
any unstructured solution s. Regarding the cost of an unstructured solution, we
only assumed that it is larger than the cost of any well-structured solution. As the
cost g(I,u) of a solution u in I is computable in time that is polynomial in ||, a
polynomial g exists such that for any problem instance / and solution u of [ the
cost g(I,u) can be encoded in g(|I|) bits. Hence, we have g(I,u) < 241D, which
implies that the cost of any well-structured solution of ¢ () is bounded from above
by Z = (4p+1)2901) 4 p+ 2. For an unstructured solution s we now define f (e, s)
as Z+ H(s,aa00), where a = A(I) is the solution returned by algorithm A of ITis.
Then the cost of unstructured solution s is indeed larger than the cost of any well-
structured solution, and a path in Ty, %) exists from s to aa00 € R.

It can be verified that, as g is computable in polynomial time and A and B are
polynomial-time algorithms, cost function f is computable in polynomial time. This
concludes the proof of the theorem. O

6.1.2 *UGP with Kernighan-Lin Neighborhood Function is PLS-Complete

Obviously, it is much easier to show for a given local search problem Il; s € PLS
that a specific problem in PLS is PLS-reducible to it than to show that all prob-
lems in PLS are PLS-reducible to it. Therefore, we took an important step in Sec-
tion 6.1.1 by proving that CIRCUIT/flip is PLS-complete. It now suffices to prove
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CIRCUIT/flip o< Il g to conclude that I} s is PLS-complete. Note that this strategy
is also used to prove that a decision problem P € NP is NP-complete: one generally
tries to define a polynomial-time reduction from a known NP-complete decision
problem Q to P.

In Section 2.5 we discuss the Kernighan-Lin neighborhood function as an effec-
tive generalization of the swap neighborhood function for UNTFORM GRAPH PARTI-
TIONING (UGP). The main result of this section is that the local search problem of
determining a local optimum with respect to the Kernighan-Lin neighborhood func-
tion is PLS-complete. By a much more involved proof it has been shown that the
simpler swap neighborhood function also implies a PLS-complete problem. Note
that this is a stronger result because a locally optimal solution with respect to the
Kernighan-Lin neighborhood function is also swap optimal.

We first introduce a problem, called POSITIVE NOT-ALL-EQUAL MAX-
3SAT (POS NAE MAX-3SAT), together with a neighborhood function for it and prove
that the corresponding local search problem is PLS-complete. Using this auxiliary
result we prove our claimed main result. In itself, the problem POS NAE MAX-3SAT
does not have much practical meaning. Let us discuss briefly the terminology used
in the problem definition of POS NAE MAX-3SAT. Let U be a set of binary variables.
A truth assignment for U assigns to each variable in U either the value O (false) or
1 (true). A variable u € U is called a positive literal, and its negation u = 1 —u
is called a negative literal. A clause is a set of literals and/or constants, where a
constant has the value either O or 1.

Definition 6.8 [POSITIVE NOT-ALL-EQUAL MAX-3SAT (POS NAE MAX-3SAT)]. Givenis a set
U of binary variables, a set C of clauses over U, and a positive integer weight w(c)
for each clause ¢ € C. A clause does not contain negative literals, and the number
of positive literals plus the number of constants in each clause is at most three. A
clause is satisfied by some truth assignment if and only if it contains at least one
literal/constant with value one and at least one literal/constant with value zero. The
problem is to find a truth assignment that maximizes the sum of the weights of
clauses that are satisfied. |

An obvious neighborhood function for POS NAE MAX-3SAT is the flip neighborhood
function in which truth assignment ¢’ is a neighbor of truth assignment ¢ if ' can be
obtained from ¢ by changing (flipping) the value of one variable. In much the same
way as the Kernighan-Lin neighborhood function for UGP is obtained by applying
variable-depth search to the swap neighborhood function, the Kernighan-Lin neigh-
borhood function for POS NAE MAX-3SAT is obtained by applying variable-depth
search to the flip neighborhood function. This means that a truth assignment ¢’ is
a neighbor of truth assignment ¢ with respect to the Kernighan-Lin neighborhood
function if it can be derived from ¢ by performing a sequence of flips, where in each
step the most profitable (least unprofitable) flip is chosen from the flips that change
the value of a variable that has not been flipped before in this sequence. An arbitrary
rule may be used for breaking ties.
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Lemma 6.2. POS NAE MAX-3SAT with the Kernighan-Lin neighborhood function
is PLS-complete.

Proof. We prove the theorem by giving a PLS-reduction from MAX-CIRCUIT/flip,
which by Theorem 6.4 is PLS-complete.

Preliminaries. The Boolean function nor(a,b) is defined by —a A —b, which means
that nor(a,b) = 1 if and only if a = b = 0. It can be verified that —a = nor(«,0),
aAb = nor(—a,—b), and aV b = —nor(a,b). As a result, any Boolean circuit D
consisting of gates from {A,V,—} can be transformed into a Boolean circuit D’
consisting of only nor-gates, such that D’ computes the same function as D and the
sizes of D and D' differ by a constant factor. Therefore, we can assume in this proof
that a Boolean circuit that defines a problem instance of MAX-CIRCUIT/flip consists
of nor-gates only. We also assume that, when given an input vector x € {0,1}", a
Boolean circuit not only computes an output vector y € {0, 1}", but also an output
vector z € {0,1}" that equals the lexicographically first higher-cost flip neighbor
of x if x is not locally optimal and equals x otherwise. This assumption is made
without loss of generality because such a circuit can be derived in polynomial time
from any Boolean circuit D in the following way. We first add n copies of D, where
the ith copy evaluates D for the input vector x in which the ith bit has been flipped.
By adding some logic, we next connect the copies, such that a Boolean circuit is
obtained that satisfies the property described. The third assumption we make is that
a Boolean circuit does not contain nodes with both indegree and outdegree zero, i.e.,
nodes that are both input node and output node. These nodes can safely be removed
as they always have the value one in a locally optimal solution.

Definition of PLS-reduction. We now start defining the PLS-reduction (¢, ¢2) from
MAX-CIRCUIT/flip to POS NAE MAX-3SAT/Kernighan-Lin. Let D be a Boolean cir-
cuit defining a problem instance of the former local search problem. We define |D|
as the size of D and M = (3|D|)3/P! as a large number depending on |D|. Further-
more, let g; be gate number j, where the gates are numbered from 1 to |D| —n in
such a way that an input of a gate g; is either an input node or a gate with a smaller
number. Without loss of generality we assume that |D| > 4.

We define the problem instance @1 (D) of local search problem POS NAE MAX-
3sAT/Kernighan-Lin as follows. For every input node x; and gate g; we introduce
the binary variables x; and g; that represent their values. Furthermore, we also intro-
duce two primed variables x; and x/, for each variable x; and one primed variable
g’]- for each gate variable g;. The primed variables represent the negation of the un-
primed variables. To ensure that in ‘good’ solutions the values of the primed vari-
ables meet this interpretation, we let @1(D) contain the clauses {x;,x}, }, {x;,x}, },
and {g;,g,} forall 1 <i<nand 1< j<|D|—n, each having weight M. For
each nor-gate g;, we also add the three clauses {g;,a,b}, {g;,a,1}, and {g;,b,1},
where variables a@ and b correspond to the gates or input nodes that form the input
of gate g; in D. All three clauses have weight o; = M/(3|D|)?/. It can be verified
that these three clauses are all satisfied by some truth assignment if and only if the
value of variable g; equals nor(a,b). Correspondingly, gate variable g; is said to
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be consistent if these three clauses are all satisfied and it is said to be inconsistent
otherwise. The three clauses are called consistency clauses. Regarding the weights
of the consistency clauses, it can be verified that

o = (3|D])%0tj+1 (6.1)

holds. We also introduce a clause {p,0} of weight M — 1.

If a truth assignment satisfies all clauses presented above, we say that it is feasi-
ble. By the definition of the clauses, this means that a truth assignment is feasible if
and only if the value of each primed variable is given by the negation of its unprimed
counterpart, the values of variables x; and g; define a valid computation of Boolean
circuit D, and p = 1. We write ¢, for the uniquely determined feasible truth assign-
ment that is implied by the computation of D on input x € {0, 1}". Furthermore, we
let R be the set containing all feasible truth assignments, i.e., R = {#|x € {0,1}"}.

To problem instance @;(D) we also add a clause {y;,0} with weight 2¥*! for
each output node y; in D. From these clauses we can derive the cost of a compu-
tation corresponding to a feasible truth assignment because we have y; = 1 if the
clause is satisfied and y; = O if this is not the case. Finally, we introduce a clause
{x;,zi} with weight two for each output node z;. If this clause is not satisfied in a
feasible truth assignment #,, then this means that flipping bit i in x results in a flip-
neighbor of x with better cost than x for Boolean circuit D. Note that variables yj
and z; are gate variables. This concludes the definition of problem instance @ (D).
An overview is given in Table 6.1. Algorithm @, returns solution x on input ¢, and
an arbitrary solution, for instance 0, on any other input.

Proof strategy. What remains to be proved is that the presented algorithms ¢; and
(@7 define a valid PLS-reduction. We partition the set of clauses into two subsets,
Ci and C;. The former subset contains the clauses written as {yg,0} and {x/;,z},
and C; contains the other clauses, i.e., the clauses that involve the feasibility of a
truth assignment. The minimum weight of any clause in C; is given by at least
OYp|—pn = (3|D|)/P1+2" Furthermore, we have that the total weight of the clauses

from Cj is given by w(Cy) = X0 28+ 425 < 2"+2 4 2. As 2"+2 420 < 21PIF1
2IPI = 4.2P and | D| > 4, by assumption, this yields

w(Cy) < 3Pl (6.2)

Hence, the total weight of the clauses in Cj is strictly smaller than the minimum
weight of any clause in C,. This gives rise to the following important observation.

Observation. The minimum cost over all feasible truth assignments is strictly
larger than the maximum cost over all infeasible truth assignments.

Hence, in terms of the transition graph T, (p) we have that a solution in R has
only outgoing arcs to other solutions in R. To prove that (¢;,,) defines a valid
PLS-reduction, we now proceed in a similar way as we did in the proof of Theo-
rem 6.4. We show that the transition graph T, (p) satisfies the following two proper-
ties, where algorithm B(x) gives the lexicographically first neighbor of x with better
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Table 6.1. Clauses in ¢ (D) with their weight, where M = (3|D|)Pl.

For each input node x; with 1 <i<n

Clause Weight
{oci, xiy } M = (3|D|)*"!
{xi,xip} M

For each nor-gate g; = nor(a,b) with 1 < j < |D|—n

Clause Weight
18,87} M
{8j,a,b} %) = 3ppis
{gj,a,1} o
{gj,b,1} o

For each output node yy and z; with 1 < j < |D|—nand 1 <i<n

Clause Weight
{y%, 0} 24!
{2} 2
Others
Clause Weight
{p,0} M—1

cost and where B means that B is applied i times in succession. Note that B satisfies
the properties of algorithm B in Definition 6.3.

e Condition 1. 1f X' = B(x), then Ty (p) contains the arc (t,z¢). Conversely,
if Ty, (p) contains the arc (ty,7¢), then an i exists with 1 <i < n, such that
x' = Bi(x). See Figure 6.5.

e Condition 2. For any truth assignment 7 ¢ R, transition graph Ty (p) contains
a path to a feasible truth assignment ¢, € R.

Proving these two conditions implies that (¢;,®2) is a PLS-reduction. As in the
proof of Theorem 6.4, the first condition may be weakened for the purpose of this
result since we do not need the second part of the condition. However, besides
providing further insight, it is used in Section 6.2.2, where we study the complexity
of iterative improvement.
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Figure 6.5. Possible correspondence between arcs in transition graph 7p and arcs in
transition graph T, (p), where x(i) = B'(x).

Proof of first part of Condition 1. It follows from the construction of ¢, (D) that the
higher the cost of x € {0,1}" in D, the higher the cost of #, in ¢;(D). Hence, to
prove the first part of Condition 1, it suffices to show that for any x € {0,1}" and
x' = B(x) the truth assignment z, is a neighbor of #,. To prove this we derive the
successive Kernighan-Lin neighbors of #,. When deriving these neighbors, we will
encounter #y, which proves that 7y is indeed a neighbor of 7,. More precisely, we
show that the sequence of flips computed by the algorithm of Figure 6.6 specifies
the successive flips that are performed by the Kernighan-Lin neighborhood function
to determine the neighborhood of #,. In the algorithm, iy denotes the unique bit in
which x and X’ differ. It can be verified that this sequence of flips does indeed result
inty.

We start with proving the validity of the first flip indicated in the algorithm
of Figure 6.6, i.e., we prove that variable x| 01 is the first variable that is flipped.
Flipping a gate variable g; in #, loses at least the clause {g;,& J} of weight M and
a consistency clause. Furthermore, the only unsatisfied clauses are in C; and, as
shown above, these clauses have a total weight lower than any single consistency
clause. This implies that flipping g; results in a cost reduction of at least M. Next,
consider flipping a variable p,x;,x};,x,, or g’. This loses at least one of the four
clauses {p,0}, {x;,x); }, {xi,x),}, and {g;,g’;} of weight M — 1 or M. Furthermore,
the only unsatisfied clause that can be satisfied as a result of such a flip is clause
{xﬁo’l ,Zio } with weight two. Note that z; = x; for all i # ip. Hence, a cost reduction
of M — 2 is the best we can achieve and this loss can only be obtained by flipping
x;o,l' As aresult, the first neighbor 1) of 1, for @, (D) is obtained by flipping variable
x?o’l, which is in accordance with the algorithm given in Figure 6.6

We next show that the second neighbor is obtained by flipping x;, in (). This
flip gains weight M via {x,x] ,}, which is lost again via {x;,x] ,}. Moreover,
each gate g; that has x;; as its input loses some of its three consistency clauses. The
weight of one such clause is ¢; and it is thus bounded from above by o;. As a result,



114 6. Time Complexity

algorithm Derive Neighbors

begin
flip xj, 13 flip x;; flip X} 5
for (j:=1;j<|D|—n;j:=j+1)do
if g; inconsistent then
flip g;; flip g;
end;

Figure 6.6. Algorithm for deriving the sequence of flips that are successively per-
formed by the Kernighan-Lin neighborhood function to determine the neighborhood
of t,. The algorithm does not give the complete sequence of |U]| flips, but stops when
it reaches neighbor 7y with x' = B(x).

the total loss is bounded by the number of gates |D| — n times the maximum loss 30,
per gate, which can easily be shown to be less than M/(3|D|). Hence, flipping x;,
reduces the cost of t)gl) by strictly less than M — 1, while flipping any other variable
still yields a reduction of at least M — 1. Hence, () is obtained by flipping Xj, in
(). Note that in 1) all primed variables, except for xQO »» are the complements of
the unprimed ones and that one or more gate variables are inconsistent.

Once we have (%), the best we can do is to satisfy clause {xi, 7x;'0,2} with weight
M via flipping x;072, which does not unsatisfy any satisfied clause. That this is indeed
the best we can do can be seen as follows: except for {x;,,x; ,}, all other unsatisfied
clauses have a total weight strictly less than M since, as shown above, the unsatisfied
consistency clauses have a total weight of less than M/(3|D|) and, by (6.2), the
clauses from C; have a total weight w(Cy) of at most 31°1 < M/(3|D|). Hence, the
third neighbor 10 is obtained from ¢(?) by flipping xgo »- Note that in 1B all primed
variables have now become the complements of the dnprimed ones. However, one
or more gate variables are still inconsistent.

To prove the validity of the algorithm given in Figure 6.6, and thus the first part
of Condition 1, we now have to show that in the next steps the values of the incon-
sistent gate variables are flipped in increasing order. We prove the claim by showing
that if p = 1 and if all primed variables are the complements of the unprimed ones in
aneighbor () of £, then neighbor 71 is obtained by flipping the first inconsistent
gate variable g; followed by its primed version g’]

Let a and b be the two inputs of gate g;. As g; is inconsistent, at least one
of the three clauses {g;,a,b}, {gj,a,1}, and {g;,b,1} is not satisfied by (). To
satisfy them all, it suffices to flip gate variable g;. This results in a cost improve-
ment of at least aj. However, some of the |D| — n — j variables corresponding to
gates with a larger number may become inconsistent. This yields a loss of at most
3(JD| = n — j)aj41, which by (6.1) is strictly smaller than (1/|D|)o;. However,
clause {g;, g’j} also becomes unsatisfied, which gives an additional loss of M,
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and clauses {x/,,z;} and {yx,0} from set C; may result in a total loss of at most
w(C1) < 3Pl < (1/|D])e;. Hence, flipping g; gives rise to a total loss of at most
M —o;(1—-2/|D]). We now show that flipping g is the best alternative by showing
that the cost reduction implied by flipping any other variable is strictly larger than
this upper bound.

The claim is clearly true for the variables p,x};,x,, and g as flipping any of
them results in a cost reduction of at least M — 2. Suppose that we flip a variable x;.
In that case, we lose 2M via the two clauses {x;,x}; } and {x;,x,}. In the same way
as done for ¢(?) it can be verified that the total sum of the weights of the unsatisfied
clauses is less than M. Hence, by flipping x; we cannot obtain a cost reduction of at
most the derived upper bound for g;.

Next, assume that we flip a gate g » with ;' > j. Then, at most |[D| —n — j' gates
become consistent, which yields a gain of at most 3(|D| —n — j')o; < (1/|D])oi;
via the consistency clauses in C,. Furthermore, the unsatisfied clauses from Cj
may imply a gain of at most w(C;) < (1/|D])cj. Together with the loss of M that
results from clause {g 7, 8", }, we get a total loss of strictly more than M — o.;(2/|D).
Hence, because |D| > 4, by assumption, the cost reduction obtained by flipping g} is
strictly larger than the derived upper bound M —a;(1 —2/|D|) on the cost reduction
obtained by flipping g;. This implies that flipping g; is preferred to flipping any
other gate variable g s with j' > j.

As a last alternative to flipping g;, we consider flipping a gate variable gy with
j' < j. In that case gate gy becomes inconsistent, yielding a loss of at least o
However, it may be that all inconsistent gates in () become consistent, giving a
gain of at most 3(|D| —n — j)a; < (1/|D])ayr, and that all clauses from C; become
satisfied, giving a gain of at most w(C1) < (1/|D|)c;.. Combined with the loss of M
via {gjr,g’j,}, we get a total loss of at least M + a7 (1 —2/|D|), which is obviously
larger than the upper bound M — o (1 —2/|D).

This concludes the proof that gate g; is flipped in truth assignment 1@ In much
the same way as we showed that variable x?o’z is flipped in truth assignment 1@ it
can be shown that a flip of g; is directly succeeded by a flip of g’] This proves that
if X' = B(x), then the transition graph T, (p) contains the arc (ty,2,).

Proof of second part of Condition 1. Let ty(1),1x(2),- -1y be all the feasible truth
assignments that are in the neighborhood of a feasible truth assignment #,. Further-
more, let them be put in the order in which they are constructed when deriving the
neighborhood of #,. As each variable may only be flipped once when deriving the
neighborhood of ¢, each variable x; with 1 <i < n can only change value once. As
aresult, we have r < n. To complete the proof of the second part of Condition 1, we
now show that x(7) = B'(x) holds forall 1 <[ < r.

Suppose that x is locally optimal for D, in which case B(x) does not exist. Then
z; = x; for all i, which yields that flipping any variable, except for p, results in a cost
reduction of at least M. Flipping variable p results in a cost reduction of only M — 1.
As p may only be flipped once, this implies that all neighbors of ¢, are infeasible,
i.e., r = 0. Furthermore, it follows from the proof of the first part of Condition 1
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that if x(1) = B(x) exists, then the first neighbor of #,, from R is given by #,(;). Based
on these observations, we can conclude that if, except for p, the blocking of each
variable is removed after deriving a neighbor x(I), which means that variables that
have been flipped may be flipped again, then the neighbors of 7, from R are given
by x(I) = B!(x) with 1 <1 < L for some L. Furthermore, B(x) is locally optimal.
However, since blockings are not removed, it may be the case that the path from
x(1) to x(I + 1) described by the algorithm in Figure 6.6 cannot be taken as it may
impose the flipping of a variable that has already been blocked. We prove our claim
that x(1) = B'(x) for all 1 <1 < r by showing that if such a blockade of a path occurs
after, say, deriving neighbor (1) then all further neighbors of ¢, are infeasible, i.e.,
I = r. Above, we have already discussed the case that B(x) does not exist. Hence,
we can assume that 7,(;) exists.

Consider the first blockade we encounter after deriving neighbor 7,(;y. As vari-
ables x; and x/, are only flipped directly after x},, they cannot be involved in the
first blockade. Suppose that the blocked variable that we want to flip is a variable
x;07 1- This means that we are deriving the first neighbor after arriving at feasible
solution 7,(;y. Since we want to flip xﬁoyl, clause {xgoyl,z,'o} is not satisfied by #,(;),
but all clauses {x/,,z;} with i # iy are. Consequently, only flipping variable p yields
a reduction of less than M, namely M — 1. As indicated above, after flipping p no
other feasible solutions are encountered.

By the same argument used for x; and x/,, we have that a gate variable g cannot
be involved in the first blockade. Hence, to prove the second part of Condltlon 1,
it now only remains to be shown that after encountering a blocked variable g; we
can only obtain infeasible solutions. Let the inputs of g; be given by a and b. As
g; is blocked and as g; is consistent in ?,, at least one of its inputs, say a, has
changed its value before obtaining neighbor ;). Furthermore, since g; has become
inconsistent after obtaining neighbor 7,(;), the other input b also has been blocked
at the moment under consideration. As a result, the two inputs will not change
value anymore, which means that g; will remain inconsistent. Hence, 7,(;) is the last
feasible neighboring solution derived for #.

Proof of Condition 2. To conclude the proof of the lemma, we now only have to
prove Condition 2, which states that for any infeasible solution a path in Ty, (p)
exists to a feasible solution. Assume that this is not the case, which means that
a locally optimal solution 7 exists that is infeasible. We show that this gives rise
to a contradiction. If p = 0, then flipping p yields a cost improvement of M — 1.
Hence, p = 1 holds in 7. Next, suppose that 7 contains a primed variable x};, x,,
or g that is not the negation of its unprimed counterpart. Then flipping the primed
variable results in a cost improvement of M via one of the clauses {x;,x}; }, {xi,x,, },
or{gj,& j} This is more than the possible loss of 2 resulting from losing the weight
of clause {x/;,z;}. Hence, in addition to p = 1, we may assume in 7 that the primed
variables are the negations of the unprimed ones. When proving the first part of
Condition 1, we derived that if this is the case, then a sequence of neighbors of 7 is
constructed by each time flipping the first inconsistent gate variable g; followed by
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its primed version g’j. This ultimately results in a feasible truth assignment. Hence,
the neighborhood of 7 contains a feasible solution and, as already observed, we
know that the cost of any feasible solution is higher than the maximum cost over all
infeasible solutions. This contradicts our assumption that 7 is locally optimal. O

Knowing that POS NAE MAX-3SAT/Kernighan-Lin is PLS-complete, we are now
able to prove that UGP/Kernighan-Lin is PLS-complete. Compared to proofs that
CIRCUIT/flip and POS NAE MAX-3SAT/Kernighan-Lin are PLS-complete, this proof
is significantly less involved, but it nevertheless illustrates a typical PLS-reduction.

Theorem 6.5. UGP with the Kernighan-Lin neighborhood function is PLS-
complete.

Proof. Let the cut of a partition (V;,V,) be defined as the set of edges that have
one endpoint in Vi and one in V5. In Section 2.5 we showed that UGP is equiva-
lent to its maximization variant in which we are asked to partition the nodes of a
graph into two sets V;,V; of equal size, such that the weight ¢(V;,V2) of the result-
ing cut is maximized instead of minimized. When we inspect the given relation
between the two variants, it follows easily that the corresponding local search prob-
lems under the Kernighan-Lin neighborhood function are also equivalent. As a
result, we can prove the theorem by giving a PLS-reduction (@;,¢7) from POS NAE
MAX-3SAT/Kernighan-Lin to the maximization version of UGP with the Kernighan-
Lin neighborhood function, where we use Lemma 6.2, which states that the former
problem is PLS-complete.

Definition PLS-reduction. Let I be an arbitrary problem instance of POS NAE MAX-
3sAT/Kernighan-Lin and let x1,x2, ..., x,, be the binary variables of I. The problem
instance @; () is defined by the following graph G = (V,E). Node set V contains
two nodes x; and x;} for each variable x; in I. The nodes x; and x} represent the value
of the variable x; and its negation, respectively. To V we also add the nodes y and
z, which represent the constant one, and the nodes y’ and 7/, which represent the
constant zero. This concludes the definition of V.

The edge set E is partitioned into the two subsets E1 and E,. Set E; contains
all edges that connect an unprimed node x; with its primed variant. Furthermore,
it contains an edge from each of the two one-nodes y and z to each of the two
zero-nodes ¥ and 7. All these m + 4 edges are assigned the same large weight of
W + 1, where W is defined as the total weight of all clauses in I. The following
two conditions are necessary and sufficient to guarantee that a cut contains all edges
from Ej.

e Nodes y and z that represent the constant one are both assigned to the same
subset and nodes y' and 7' that represent the constant zero are both assigned
to the other subset.

e The nodes x; and x} are assigned to different subsets forall 1 <i < m.

If these two conditions are satisfied by a partition, we say that the partition is fea-
sible; see Figure 6.7 for an example. We can assume the following one-to-one
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Figure 6.7. Feasible partition P, = (V;,V,) for the graph @; (1), where I is the prob-
lem instance of POS NAE MAX-3SAT/Kernighan-Lin consisting of the two clauses
{x1,x2,1} and {x2,x3}. Both clauses have a weight of two. The undashed edges
are from E| and the dashed edges are from E;. Each edge from E; has weight
W +1 =5, and the weights of the edges from E, are denoted in the figure. Feasible
partition P; corresponds to truth assignment ¢ with x; = 1 and x; = x3 = 0. This
truth assignment satisfies the clause {xi,x2,1} but not the clause {x2,x3}.

correspondence between a feasible partition and a truth assignment without violat-
ing the interpretation of the nodes x; and x/ as being the value of variable x; and its
negation. A variable x; or its negation is assigned the value one if and only if the
corresponding node is contained in the same subset as the variables y, z that repre-
sent the constant one. This means that if a variable or its negation is assigned the
value zero, then the corresponding node is contained in the same subset as the two
variables y’ and 7’ that represent the constant zero. We define P, as the feasible par-
tition corresponding to truth assignment ¢ and R as the set of all feasible partitions,
ie., R={P |t truth assignment}.

To be able to derive the cost of a truth assignment ¢ from the feasible partition
P,, we add additional edges to E via E;. For each clause ¢ = {a,b}, we add the edge
{a,b} to E, with the same weight as clause ¢, where for the constants one and zero
we use the nodes y and y/, respectively. If such an edge contributes its weight to the
cost of a feasible partition P, then a and b are assigned to different subsets, which
implies that the clause {a,b} is satisfied by truth assignment ¢.

For a clause ¢ = {a,b,c} of weight w, we include the three edges {a,b}, {b,c},
and {a,c} in E3, each with weight w/2. It can be verified that the cut of a potentially
infeasible partition contains either two out of the three edges or none of the three
edges. Moreover, for a feasible partition P; the former case implies that clause c is
satisfied by ¢ and the latter case implies that c is not satisfied by ¢. As a result, the
edges contribute w to the cost of a feasible partition P, if ¢ is satisfied by ¢ and they
do not contribute otherwise. We note that if a pair of nodes a,b occurs in several
clauses, we assign to edge {a,b} the weight obtained by summing up the weights
that arise from all these clauses. This concludes the definition of G and therefore
of problem instance @;(/). To complete the definition of our PLS-reduction, we
define algorithm 3 in such a way that it returns for a potentially infeasible partition
P the truth assignment that assigns to a variable x; the value one if and only if it is
contained in the same subset as variable y. Note that this algorithm complies with
the given relation between a truth assignment ¢ and the feasible partition P;.
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Figure 6.8. Correspondence between arc in transition graph 7; and arc in transition
graph Ty, (7).

Proof strategy. As the total weight W of the edges from E, that can be in the cut
of a partition is strictly smaller than the weight W 41 of a single edge in E; and
as the cut of a feasible partition contains all edges from E;, we can make a similar
observation to that made in the proof of Lemma 6.2.

Observation. The minimum cost over all feasible partitions is strictly larger than
the maximum cost over all infeasible partitions.

This implies that, for any feasible partition P;, the transition graph Ty ;) of @1(1)
only contains outgoing arcs to other feasible solutions. Consequently, to prove that
(@1,92) correctly defines a PLS-reduction, it suffices to prove that the transition
graph satisfies the following two conditions.

e Condition 1. Ty, ;) contains an arc (P;,Py) if and only if 7; contains the arc
(¢,t'). See Figure 6.8.

e Condition 2. For any partition P ¢ R, transition graph Ty, (1) contains a path
to a feasible partition.

In the proof we assume that, to determine the Kernighan-Lin neighborhood of a
partition, an arbitrary rule is used for breaking ties in the case that several pairs
of nodes qualify for being selected for a swap. Given this rule, we may choose
the tie-breaking rule used to determine the Kernighan-Lin neighborhood of a truth
assignment as we like because the PLS-completeness result for POS NAE MAX-
3sAT/Kernighan-Lin holds regardless of this rule.

Proof of Condition 1. As the cost of a feasible partition P, is given by |E{|(W + 1)
plus the cost of truth assignment ¢, the first condition holds if we can prove that
for any truth assignment ¢, partition P, and ¢ have the same neighborhood. More
precisely, it suffices to show that Py is a neighbor of P; for ¢’ # ¢ if and only if ¢’ is a
neighbor of 7. Until all pairs of nodes x;, x; have been swapped, and thus blocked, we
only swap pairs x;,x; of nodes when deriving the neighbors of F;. This is true since
swapping such a pair in a feasible partition results again in a high-quality, feasible
partition, while swapping any other pair of nodes results in a low-quality, infeasible
partition. After all pairs of nodes x;,x} have been swapped, the nodes y,z and y',7’
are swapped in two steps, where the intermediate partition is infeasible. This brings
us back to partition P;.
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Swapping x; and x} has the same effect on the cost of a feasible partition as
flipping the value of variable x; on the cost of the corresponding truth assignment.
As aresult, we obtain that, if the same rule is used for breaking ties in the derivation
of the Kernighan-Lin neighborhood of 7 as is used in the derivation of the Kernighan-
Lin neighborhood of P, then the feasible neighbors of P, excluding P;, correspond
to the truth assignments in the neighborhood of #. This proves the first claimed
condition given above.

Proof of Condition 2. To prove the second condition, suppose that it does not hold,
which means that an infeasible partition P exists that is locally optimal. We show
that this gives rise to a contradiction. As pP= (V1,V,) is infeasible, either V] contains
a pair u,u’ of corresponding nodes or the two one-nodes y,z are split. First of all,
consider the former case. Obviously, V, also contains a pair v,v' of corresponding
nodes as |V| =|Va|. Swapping u and v leads to a weight gain of at least W + 1 via the
edges from E; and it leads to a weight reduction of at most W via the edges from E».
This contradicts the assumption that P is locally optimal. Next, assume that the two
one-nodes are split, but that V; does not contain a pair u,u’ of corresponding nodes.
The two zero-nodes then also have to be in different subsets. Swapping a zero-node
from one subset with a one-node in the other subset yields a cost improvement of
2(W + 1). Again, this contradicts the local optimality of P. |

6.2 Time Complexity of Iterative Improvement

While the focus of the previous section was on the computational complexity of
local search problems, we now study the time complexity of the iterative improve-
ment algorithm when it is used to solve such a problem. A local search problem can
be formulated as finding a node in a transition graph with outdegree zero. Iterative
improvement is the obvious algorithm for tackling this problem. It traverses a tran-
sition graph, which is directed and acyclic, until it reaches a node without outgoing
arcs. The precise path that the algorithm follows is determined by the pivoting rule.
This rule specifies the neighboring solution that is selected if a solution has more
than one neighbor with better cost. In terms of the transition graph, the pivoting
rule prescribes which arc is to be selected in a given node if it has multiple outgoing
arcs. Ideally, we would like to use a pivoting rule that takes the shortest path to a
local optimum. However, computing this rule may be NP-hard, as, for instance, is
the case for TSP with the 2-change neighborhood function.

As most of the neighborhood functions used in practice induce relatively small
neighborhoods, which is reflected in our definition of the class PLS, it is generally
easy to derive efficient implementations of commonly used (heuristic) pivoting rules
as first improvement and best improvement. Hence, with regard to the time com-
plexity of iterative improvement, we are particularly interested in the number of
iterations required by iterative improvement. Obviously, the maximum number of
iterations required by iterative improvement is bounded from above by the longest
path that occurs in the transition graph. This upper bound holds regardless of the
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pivoting rule used and the solution with which the algorithm starts. Whether or
not this bound is tight depends on the pivoting rule applied. We therefore note that
one should take account of the assumptions made about this rule when confronted
with a claim about the time complexity of iterative improvement. With regard to
the starting solution of iterative improvement, we generally do not want to make
any assumptions. A reason for this is that because the quality of a starting solution
generally has a major effect on the quality of the final solution, we want to have the
opportunity to tune the algorithm that derives a starting solution to the application
we are considering. Another reason is that, in order to make multiple runs of iter-
ative improvement successful, we like to initialize each run with a solution that is
quite different from the starting solutions used in the other runs; see Chapter 7.

Suppose that we apply iterative improvement to solve a problem Il; g in PLS and
let ¢ be the cost of the solution with which we initialize the algorithm. Because the
cost function is assumed to be integral and because in each iteration of iterative im-
provement the cost of the solution improves, the number of iterations the algorithm
needs for reaching a local optimum is bounded by |c — f*|, where f* is the cost of
an optimal solution. From this, it follows that if in the combinatorial optimization
problem underlying Il s the cost of a solution is polynomially bounded in the input
size, then iterative improvement can be implemented to run in polynomial time for
ITrs. An example is MINIMUM GRAPH COLORING with the Kempe chain neighbor-
hood function where we define the cost of a coloring as the number of colors used
in the coloring; see Section 2.4.

Although not satisfying this strong constraint, the cost functions of many com-
binatorial optimization problems satisfy the weaker property that the cost of a so-
lution is polynomially bounded in the input size and the magnitude of the largest
number that occurs in the problem instance. In these cases iterative improvement
has a pseudo-polynomial running time. Examples include the other combinatorial
optimization problems discussed in this book, such as TSP, machine scheduling
problems, STG, and UGP. For TSP the cost of a solution is, for instance, bounded by
n times the longest distance in the distance matrix. In the combinatorial optimiza-
tion problem underlying CIRCUIT/flip, which is defined in Section 6.1.1, the cost
function does not even satisfy this weaker property.

This section is split into two parts. In Section 6.2.1, we first derive a nega-
tive result and a positive result for iterative improvement in an ad hoc manner, i.e.,
without employing general ideas. For these two results to hold, assumptions are
made about the pivoting rule used. In Section 6.2.2 we further exploit the theory of
PLS-completeness to derive negative results that hold regardless of the pivoting rule
used.

6.2.1 Ad Hoc Strategies

The following theorem states the negative result that iterative improvement does not
have a polynomial running time for METRIC TSP with the 2-change neighborhood
function.
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Figure 6.9. Definition of the distance matrix d in the problem instance of SYMMET-
RIC TSP introduced in the proof of Theorem 6.6, where i > 2 is an arbitrary city that
is either even (left) or odd (right).

Theorem 6.6. For METRIC TSP with the 2-change neighborhood function, iterative
improvement may require an exponential number of iterations to reach a local opti-
mum if the pivoting rule is used that selects an improving move randomly.

Proof. Consider a problem instance / of SYMMETRIC TSP instead of METRIC TSP.
By adding to each entry d;; of the distance matrix d the maximum distance dpyax
occurring in d, we obtain a distance matrix that satisfies the triangle inequality. This
modification does not affect a run of iterative improvement as for any tour it results
in a length increase of exactly n - dmax. Hence, to prove the theorem it suffices to
show that it holds for SYMMETRIC TSP.

We now proceed as follows. For any even n we construct a problem instance /
of SYMMETRIC TSP consisting of n cities. For this problem we then derive a se-
quence of exponentially many tours that can be visited successively by the iterative
improvement algorithm. Note that because iterative improvement runs in pseudo-
polynomial time for SYMMETRIC TSP, the distance matrix of I will have to contain
distances of exponential length.

Because we are considering SYMMETRIC TSP, we have d;; = dj;. Therefore, it
suffices to define the distance d;; for the case where i > 2 and either j >ior j = 1.
The definition of the distance matrix d is visualized in Figure 6.9. Formally, for
even i > 2, the distance d;; is given by 2243 if jis odd and either j = 1 or j > i and
d;; is given by d;; = 2% if j is even and j > i. For odd i > 2, we apply the same
case distinction: d;; is given by 221if jis odd and either j = 1 or j > i and it is given
by 2%+3 if jis even and j > i.

We prove that iterative improvement can take an exponential number of itera-
tions to transform the tour (1,2,...,n) into the tour (1,n— 1,n—2,...,2 n) for the
problem instance described. We prove this result by showing by induction on ¢
that the following assertion holds. Let tour T contain a subtour x,2,3,...,2g+ 1,y
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for a ¢ < "2, where x and y are cities, possibly 1 and 2g + 2, such that for all
2<i<2g+1 we have dy; = dy; and d;y = d;24+2. Then a sequence of at least
24~ improving 2-changes exists that transforms tour T into T4, Where tour T, is
equivalent to T, except that the subtour x,2,3,...,2g+ 1,y is replaced by the subtour
x,2g+1,2q,...,2,y, in which the order of the 2¢ middle cities has been reversed.

We first prove the basis case ¢ = 1. Tour T, = 1; that contains x, 3,2,y is obtained
from tour T that contains x,2,3,y by the single 2-change that replaces the edges
{x,2} and {3,y} by {x,3} and {2,y}. As 297! = 1, the basis case now follows if
T; is shorter than T. This is true because for the cost improvement A(t, ;) of T; in
comparison with T, we can derive

Alt,T11) = dip+dia—diz—dra
27429 -26_78
> 0.

Next, consider the case g > 2. We show how T can be transformed into 7, in at
least 29~ ! improving 2-changes, where we distinguish five phases in the transfor-
mation. The final tour in phase i is denoted by 7). Hence, 1) = Ty

In the first phase, ) = Ty—1 is derived from t. By the induction hypothesis
this can be done in 29~2 improving 2-changes. In Phase 2 we next change the order
of the cities 2¢ and 2¢ + 1 in subtour x,2g — 1,2g—2,...,2,2q,2q+ 1,y of TV) by
performing a 2-change on the edges {2,2¢g} and {2g + 1,y}. This results in a tour
1@ with shorter length than () since

AW A?) = g+ dagringrr — dopgi — dagogin
28 + 24q+5 _ 27 _ 24q+4

> 0.

In Phase 3 the first and last edges {x,2g — 1} and {2¢,y} occurring in subtour
x,29—1,2g—2...,2,2q+1,2q,y of 11 are replaced by the two edges {x,2¢} and
{2g — 1,y}. This yields a cost improvement of

AP 18) = disg 1+ dogagra— diog— dag 12442
24q72 + 24q+4 _ 24q+3 _ 24q+1

> 0.

The resulting tour 703) contains x, 2q,2q+1,2,3,...,2q — 1,y. By the definition of
the distance matrix, we have dpgy1; =d; and djpg12 = d;p4 forall 2 <i<2q. Asa
result, we can apply the induction hypothesis to the subtour x',2,3,...,2g — 1,y of
10) with ' = 2g+ 1 and y' = y. This yields that T3 can be transformed into ©*) by
at least 29~2 improving 2-changes, where ™ is given by 703) with the order of the
cities 2,3,...,2g — 1 reversed, i.e., 7 contains x,2q,2q+1,2g—1,2g—2,...,2,y.
In the final phase we reverse the order of the cities 2¢ and 2g + 1 by performing a
2-change on {x,2¢} and {2g + 1,2 — 1}. This again results in an improvement of
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the tour as we have

AW ) = d g+ drg—12g+1—d12g+1 — d2g—1,24
24q+3 + 24(1—2 _ 24q+2 _ 24q+1

> 0.

In conclusion, we have transformed T into 1) = T4 by only performing improv-
ing 2-changes. The total number of 2-changes is at least 29=2 in Phase 1, one in
Phases 2 and 3, at least 29-2 in Phase 4, and one in Phase 5. This makes a total
of more than 29~! improving 2-changes. This proves the induction hypothesis and
consequently it proves the theorem. |

We emphasize that the proof of the above theorem need not hold for alternative
pivoting rules. By assuming, for instance, a pivoting rule that selects two edges
that are closest to city one, we can transform the given tour (1,2,...,n) into tour
(I,n—1,n—2,...,2,n) in one single move instead of in 2"2” moves. A particu-
larly interesting open question is whether iterative improvement may still require
an exponential number of iterations when the frequently applied best-improvement
pivoting rule is used.

Another interesting question is how many iterations iterative improvement re-
quires when applied to EUCLIDEAN TSP with the 2-change neighborhood function.
For this variant of TSP, Lemma 5.1 states that a locally optimal tour does not have
edges that touch, intersect, or overlap. If the reverse were also true, then answering
the question above would correspond to deriving the maximum number of cost-
improving 2-changes required to reach a tour without any touching, intersecting, or
overlapping edges. The reverse is, however, not true because the tour depicted in
Figure 2.17 is not locally optimal despite the fact that it has this property. The
following theorem nevertheless gives a bound on the number of cost-improving
2-changes that are required to obtain a tour with no edges that touch, intersect,
or overlap. It focuses on the case that no three cities lie on a straight line, which
implies that edges cannot touch or overlap.

Theorem 6.7. Consider a problem instance of EUCLIDEAN TSP in which no three
cities lie on a straight line. For an arbitrary tour, we have that repeatedly select-
ing any two intersecting edges for a 2-change yields a sequence of O(n3) cost-
improving 2-changes that transforms it into a tour without intersections.

Proof. We define a function f from the set of tours to N with the following two
properties.

e The value f(t) is bounded from above by 1.

o If a tour T contains intersecting edges, then performing a 2-change on any two
intersecting edges yields, besides a shorter tour, a decrease of f(7).

The existence of f obviously proves the theorem.

We use the term ‘beam’ to indicate an infinite straight line going through any
two cities. Hence, as by assumption no three cities lie on a straight line, each edge
lies on one unique beam. We define the index f(e) of an edge e as the number of
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beams that intersect, touch, or overlap e, and we define the index f(t) of a tour T
as Y.cc f(e). We show that this function f satisfies the two properties given above,
where we let T denote an arbitrary tour.

The first property is easy. We have (5) = "("; ! edges and just as many beams.
This gives f(e) < n? for any edge e and thus also f(1) < n°.

Next consider the second property. Let e; and e be any two intersecting edges
in T. Then performing a 2-change on e} and e; yields a shorter tour T’ in which these
two edges are replaced by two new non-intersecting edges. We denote these new
edges by €] and 5. The 2-change is visualized in Figure 5.2(a) for e; = {uy,v1},
er = {uz,}, €] = {u1,ur}, and €5 = {vi,12}. The 2-change need not decrease
the total number of intersections since new intersections may have been introduced.
However, it does decrease f(t), as shown in the following. It can be observed
that the beams associated with e, e, e’l, and e’2 all contribute one to f(e;) and
f(e2). However, while the beams associated with e; and e, contribute one to both
f(€}) and f(é}), the beam associated with ¢} only contributes one to f(e}) and
the beam associated with ¢, only contributes one to f(e5). Furthermore, for the
beam associated with any other edge, it can be observed that if it intersects ei-
ther €| or ¢, then it also intersects e; or e> and if it intersects both ¢} and ¢, then
it also intersects both e; and e¢;. From these observations, we can conclude that
f(t) = f(t') = fer) + f(ez2) — f(€}) — f(€h) > 2, which proves the second prop-
erty. O

In the remainder of this section we focus on the move neighborhood function for
MULTIPROCESSOR SCHEDULING, as described in Section 2.2. Bear in mind that
we assume use of the non-straightforward cost function that returns not only the
makespan of a schedule, but also the number of critical machines it contains. Let
the load /; of a machine i be defined as in Section 5.2.2 and let A = l;yax — Imin, Where
Imax and Iy give the maximum and minimum load over all machines, respectively.
Obviously, moving a job j from a machine i to a machine i’ results in a better
solution if and only if machine i is critical and p; < [; —Iy. Note that if p; = [; — Iy,
then moving job j from i to i’ implies that the new load of machine i’ equals the
old load of machine i and vice versa. It follows that for a critical machine i the
set C; of candidate jobs whose movement can realize a cost reduction is given by
Ci={j|je€Ainpj <A}, where A; contains the jobs assigned to machine i. We
can actually achieve an improvement from a candidate job j € C; by moving it to
a machine with minimum load. We now propose the following pivoting rule: we
select the move neighbor that is obtained by moving a candidate job j € C; from a
critical machine i to a machine with minimum load. Furthermore, we select job j
from C; such that it has maximal processing requirement, i.e., for each job j € C;
with py > p; we have py > A. The theorem below states that if we apply this
pivoting rule then iterative improvement requires only O (nm) iterations.

The non-trivial pivoting rule we proposed can also be modeled in the neighbor-
hood function. This can be done in the following way. Consider the neighborhood
function obtained from the move neighborhood function by removing all arcs in the
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move neighborhood graph that do not comply with the pivoting rule proposed. This
neighborhood function combined with the simple pivoting rule that selects a ran-
dom neighbor results in the same implementation of iterative improvement as the
move neighborhood function combined with the non-trivial pivoting rule that we
proposed. This remark generally holds, i.e., when specifying an iterative improve-
ment implementation we can make a trade-off between assigning complexity to the
neighborhood function and to the pivoting rule.

Theorem 6.8. Consider MULTIPROCESSOR SCHEDULING with the move neighbor-
hood function. Iterative improvement requires O(nm) iterations if a pivoting rule is
used that selects a job with the largest possible processing requirement on a critical
machine to move to a machine with minimum load.

Proof.  In the notation used in this proof we add superscript (k) to indicate that
we are referring to the situation at the start of the kth iteration of iterative improve-
ment. It can be verified that, as a function of k, ll(Tlfl)n is non-decreasing, léﬁi}x is
non-increasing, and, consequently, A%) is also non-increasing.

We show that once a job has been removed from a machine it never returns to
that same machine. This proves the theorem as it implies that each of the n jobs can
move at most m — 1 times. Assume that the claim does not hold, which means that
a job j exists that is removed from a machine i in iteration kje4ve and is moved back
onto machine i in iteration k. We show that this gives rise to a contradiction.
We define k' as the first iteration after kjeqve at the start of which machine i has the
smallest load over all m machines. Furthermore, we let k be the last iteration before
iteration K’ in which a job has been removed from machine i. We denote this job by

Jjast- Note that kieave < k <K' < Kreum: W = 11, and 1) = 1),

!
As the maximum load /ix is non-increasing, we obtain lr(faz( < lﬁgx and thus

lr(nk;i < ll.(k). As aresult, we derive

AW) = (5 &) <y ), (6.3)
Between iterations k and k' no jobs are removed from or moved onto machine i.

l.(k’) = lka) = li(k) — Djg- As aresult, the right-hand side of (6.3) is at

most pj, ., which gives AR < p st

As job Jius is removed from machine 7 in iteration k, we have A®) > p; . Since
A is non-increasing this implies that Alfeae) > p. also holds. Furthermore, be-
cause by the minimality of k' no jobs are moved onto machine i between iterations
kieave and K, job jias has been assigned to machine i at the start of iteration kjeaye.
As the assumed pivoting rule removes a job with the largest possible processing
requirement from a critical machine, these two observations yield p;. < p;. By
K < kretarn and A®) < p s this implies that Atkewm) < 5 which contradicts our
assumption that job j is removed from machine i in iteration krerm. This proves the
theorem. a

This implies [
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6.2.2 General Strategy

In the previous section we proved Theorem 6.6, which states the negative result
that if iterative improvement with the 2-change neighborhood function is applied
to METRIC TSP, then the worst-case number of iterations required by the algorithm
before reaching a local optimum cannot be bounded by a polynomial. In this result it
is assumed that the pivoting rule is applied in which a lower-cost neighbor is chosen
randomly. A question that arises is whether this bad worst-case behavior can be
avoided by choosing a less naive pivoting rule or whether it is unavoidable due to the
structure of the transition graph. This means that we are interested in the question of
whether iterative improvement would still run in worst-case exponential time if for
the pivoting rule we were to have an oracle at our disposal that gives us a neighbor
that leads to a nearest local optimum. This problem, called the transition graph
complexity problem, is formalized as follows. For the definition of the potential of
a transition graph we refer to Definition 1.11.

Definition 6.9. For a given local search problem Ilig, the transition graph com-
plexity problem corresponds to deciding whether I'l; s can induce transition graphs
with an exponentially large potential. O

In this section we study the transition graph complexity problem for PLS-complete
problems. For PLS-complete problems we already know that, unless PO = PLS,
they cannot be solved in polynomial time. Solving the transition graph complexity
problem gives us additional information on whether the unavoidable exponential
running time is caused by the structure of the transition graph or is only caused by
the intractability of computing an optimal pivoting rule.

The reason we introduced local search problems is that they are the problems
that are actually solved by iterative improvement. Solving a local search problem is
generally not a goal in itself. Therefore, considerably less attention has been paid by
scientists to solving these problems efficiently than to finding efficient algorithms
for NP-hard combinatorial optimization problems and NP-complete decision prob-
lems. As a result, we have stronger evidence for the inequality P # NP, which by
Theorem B.2 is equivalent to PO # NPO, than for PO # PLS. Note that, as dis-
cussed at the beginning of Section 6.1, the former inequality is also theoretically
stronger than the latter one. This brings us to the second relevant implication of
knowing that the potential of a transition graph can be exponentially large for a
given PLS-complete problem. It proves an exponential worst-case running time for
iterative improvement even in the case that PO = PLS. We nevertheless emphasize
that it is commonly believed that PO # PLS holds.

To solve the transition graph complexity problem we proceed as follows. We
defined PLS-reductions such that if Il g o< HLS holds and if I} s cannot be solved
in polynomial time, then IT{ § cannot be solved in polynomial time either. Below we
refine the definition of a PLS-reduction such that, in addition to this behavior, we
have that if I g o< HLS holds and if a transition graph for Il 5 can have an exponen-
tially large potential, then a transition graph of ITj ¢ can also have an exponentially
large potential. This more powerful PLS-reduction is called a tight PLS-reduction.
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Figure 6.10. (a) Transition graphs 7 of I = (S, f,N) and Ty, 5y of @1 (1) = (', f',N')
and algorithm @, for some local search problem instance / and PLS-reduction
(@1,02). A dashed arc originates from an s’ € §" and points to s = @2(1,s'). (b)-(c)
Invalid choices of R, where R is given by S’ minus the shaded solutions in transi-
tion graph T, (7). (p§ denotes algorithm @, for I with the solution set " of @; (1)
restricted to R. (d) Valid choice of R.

We show that the class PLS contains a local search problem for which the transi-
tion graph can have an exponentially large potential and we indicate that all PLS-
reductions given in Section 6.1 are tight. This proves that all three problems for
which we proved PLS-completeness can have transition graphs with exponentially
large potential. Hence, for these problems iterative improvement needs in the worst
case an exponential number of iterations to reach a local optimum even if a pivoting
rule is used that takes the shortest path to a local optimum. This completes the out-
line of our approach for tackling the transition graph complexity problem. We now
fill in the details.

Let (@1,¢2) define a PLS-reduction between two local search problems ITj g
and IT] g and let I = (S, f,N) be an arbitrary problem instance of I;g with image
o1(I) = (5, f',N"). By definition, algorithm @, maps any solution in S’ to a solution
in S, such that a local optimum in §’ is also a local optimum in S. Figure 6.10(a)
depicts possible transition graphs 7; and Ty, ;) of I and @, (I), respectively, and a
possible choice for @,. For (¢1,®,) to be a tight PLS-reduction, a subset R of S’ has
to exist that satisfies the following three conditions. In the first place, @, has to be
surjective for I when restricting the solution set " of @; () to R. This means that
for each solution s € S, a solution s" € R must exist that is mapped to s by algorithm
@,. Furthermore, solution s’ must be computable in polynomial time. Note that
for (1,¢2) to be a standard PLS-reduction it is not necessary that ¢ is surjective
for a given problem instance, as follows from Figure 6.1. The second condition
on R is that it contains all local optima of @;(I). Figures 6.10(b) and 6.10(c) give
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examples of R that do not satisfy the first and second condition, respectively, and
Figure 6.10(d) gives an example of R that satisfies both conditions. The third and last
condition that has to be satisfied is that if in 7, (;) a solution s5 € R can be reached
from a solution s} € R without visiting any other solution from R, then the distance
between the corresponding solutions in S is not too large, i.e., it is polynomially
bounded.

Definition 6.10. Local search problem Iy s is tightly PLS-reducible to local search
problem ITj ¢, denoted by TIpg o<ign; ITj g, if a PLS-reduction (@1,92) exists, such
that for a polynomial p the following holds. For any problem instance I = (S, f,N)
of Tl s with image instance ¢ (I) = (8, f',N') of IIj 5, we can choose a subset
R C §' that satisfies the following properties.

e For any s € S we can construct in polynomial time a solution s’ € R with
02 (Iasl) =S
e R contains all local optima in §’.

e If transition graph Tj, ;) of @1 (I) contains a direct path from s} € Rto s}, € R,
then the distance from s1 = @2(/,s}) to s2 = ¢2(1,s5) in transition graph 7; of
1 is bounded from above by p(|I|), where a path in T, ;) is said to be direct
if, except for the first and last solution, it only contains solutions outside R.

The pair (¢1,¢2) is called a tight PLS-reduction. |

Definition 6.11. A local search problem in PLS is tightly PLS-complete if each
problem I} s € PLS is tightly PLS-reducible to it. O

This definition of a tight PLS-reduction preserves the property that a transition graph
induced by a problem can be exponential, as shown in the following. By the last
condition in Definition 6.10, we have that if the distance between any two solutions
s) € Rand sy € Rin Ty, () is dy, ¢, then dy, o - p(|]) gives an upper bound on the
distance between the corresponding solutions s; = @2(7,s}) and s = @2(I,s5) in
T;. As R contains all local optima, this implies that if s’ € R is within k steps of
a local optimum §' in T, (;), then solution s = @(7,s") is within k- p(|1|) steps of
§ = @2(1,8'"), which by the definition of a PLS-reduction is a local optimum in S.
Hence, by the second condition in Definition 6.10, the potential of 7; is at most
p(|1]) larger than the potential of Ty, (;). Because the input size of @ (I) is bounded
from above by a polynomial in the input size of I, this implies that if 77 has an
exponentially large potential, then Tj ;) must have one as well. We thus arrive at
the following result.

Lemma 6.3. If (¢1,92) defines a tight PLS-reduction from local search problem
s to local search problem 1| g and if the potential of T1is cannot be bounded by
a polynomial, then neither can the potential of T1j . a

We note that in order for this lemma to hold, the polynomial-time requirement in
the first condition of Definition 6.10 is not needed. We nevertheless impose the
requirement for a reason that can be found in the bibliographical notes at the end
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of this chapter. By Lemma 6.3, it now suffices to indicate one local search problem
in PLS for which the transition graph can have an exponentially large potential to
conclude that this result holds for any tightly PLS-complete problem.

Lemma 6.4. PLS contains a local search problem for which the potential of the
transition graph cannot be bounded by a polynomial.

Proof. Consider the trivial combinatorial optimization problem that, given an inte-
ger n, asks for the smallest integer i between 1 and n. This means that we want to
minimize the cost function f(i) =i with 1 < i < n. For this problem, we consider
the solution space consisting of the integers 1,2,...,n and we assume a neighbor-
hood function in which integer 1 has no neighbors and integer i > 2 has only one
neighbor, namely i — 1. This yields a local search problem that is obviously in PLS.
Furthermore, the transition graph is given by a single directed path that successively

visits the solutions n,n —1,...,1. The potential of this graph equals the distance
fromn to 1, which is n — 1. This is exponentially large as the input size is only logn.
O

Theorem 6.9. For a tightly PLS-complete problem, iterative improvement requires
an exponential number of iterations in the worst case to reach a local optimum,
regardless of the pivoting rule used. O

Theorem 6.10. The local search problems MIN-CIRCUIT/flip, MAX-CIRCUIT/flip,
POS NAE MAX-3SAT/Kernighan-Lin, and UGP/Kernighan-Lin are all tightly PLS-
complete.
Proof. In Theorem 6.4 we prove that MIN-CIRCUIT/flip and MAX-CIRCUIT/flip
are PLS-complete by means of two PLS-reductions in Lemma 6.1 and two in The-
orem 6.4. Both PLS-reductions in Lemma 6.1 and the first one in Theorem 6.4
are obviously tight as they preserve solutions, costs, and neighborhoods. The same
holds for the PLS-reduction that is mentioned implicitly at the beginning of Theo-
rem 6.5 and that reduces UGP/Kernighan-Lin to this local search problem with UGP
replaced by its maximization variant. We now show that the second PLS-reduction
in Theorem 6.4 and the PLS-reduction in Theorem 6.5 are also tight.

For any problem instance I of the problem from which we reduced, we identified
aset R C 8 with (8', ") = @1 (I) and proved the following two properties.

o Tj, (1) contains a direct path from s} € Rto s, € Rif and only if 77 contains an
arc (s1,s2) with s; = @2(1,s}), s2 = @2(I,s5), and, in the case of CIRCUIT/flip,
sh = B(s}), where B is computable in polynomial time.

e For any solution s} ¢ R, transition graph Ty, (1) contains a path to a solution

sh €R.
Furthermore, we indicated that ¢, defines a bijective function from R to S. For the
purpose of proving PLS-completeness, we did not need the only-if part of the first
condition. However, by proving it, we showed that the PLS-reductions presented

are tight. Note that the second condition implies that R contains all local optima in
S
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Next, consider the PLS-completeness proof of the local search problem POS NAE
MAX-3SAT/Kernighan-Lin given in Lemma 6.2. In this proof we also identified
for any problem instance I of the problem from which we reduced, in this case
MAX-CIRCUIT/lip, a set R C " with (', f') = @1 (I) such that the second property
mentioned above holds and @, defines a bijective function from R to S. The first
property, however, has been replaced by the following one.

e If 55 = B(s1) holds, where B is a polynomial-time algorithm, then 7, () con-
tains the arc (s7,55) with s1 = @2(7, ) and s2 = @2(1,s). Conversely, if T, (;)
contains a direct path from s} to s, then an i exists with 1 < i < n, such that

s> = Bi(s1).
Nevertheless, because n < |I| we can still conclude that the proposed PLS-reduction
is tight. O

Suppose that for a combinatorial optimization problem IT we have two neighbor-
hood functions N and N’, where N’ is a generalization of N, i.e., N(s) C N'(s) for
any solution s. For TSP, the 2-change and 3-change neighborhood functions are ex-
amples of N and N, respectively. Then the local search problem I s specified by I'T
and N is PLS-complete if this is the case for the local search problem ITj ¢ specified
by IT and N’. More generally, this means that to prove PLS-completeness results
for one combinatorial optimization problem and multiple neighborhood functions it
suffices to prove that the weakest neighborhood function induces a PLS-complete
problem. However, if we want to know whether the induced local search problems
are tightly PLS-complete, we can no longer restrict ourselves to the weakest neigh-
borhood function. It may be the case that Il g is tightly PLS-complete, while this
is not the case for ITj . The reason for this is that the generalization can add arcs
to the transition graph, which may decrease its potential to a polynomially bounded
value.

We refer you to Appendix C for a list of local search problems that have been
proven to be (tightly) PLS-complete.

6.3 Bibliographical Notes

The complexity theory for local search problems presented in Section 6.1 has been
introduced by Johnson, Papadimitriou & Yannakakis [1988]. They have also proved
that CIRCUIT/flip and UGP/Kernighan-Lin are PLS-complete. However, our presen-
tation follows more closely the paper of Yannakakis [1997]. In Appendix C we give
a list of PLS-complete local search problems and references to the papers in which
the PLS-completeness has been proved.

With regard to TSP with the 2-change neighborhood function, we mentioned in
Section 6.2 that it is NP-hard to compute an optimal pivoting rule for iterative im-
provement or, more precisely, to determine the shortest path for a problem instance
from a solution to a locally optimal solution in the corresponding transition graph.
This is proved by Fischer [1995], who shows that it is NP-complete to decide for
a problem instance /, a tour T, and an integer k given in unary whether the transi-
tion graph of I contains a path of length at most k£ from 7 to a locally optimal tour.
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We also indicate in Section 6.2 that the applied pivoting rule can have a substantial
effect on the number of iterations required by iterative improvement before a local
optimum is reached. To substantiate this claim, consider the problem in which we
are asked to find a maximum flow from a given source node to a given target node
in a directed graph. An exact neighborhood function for this problem is the one
in which a flow f’ is a neighbor of flow f if it can be obtained by augmenting the
flow along a path by as large a flow as possible. Papadimitriou & Steiglitz [1982]
show that if we select an augmenting path arbitrarily, then in the worst case iterative
improvement requires an exponential number of iterations, while only a polynomial
number of iterations are required when the pivoting rule always selects a shortest
augmenting path.

The proof that iterative improvement may require an exponential number of it-
erations in the worst case for METRIC TSP with the 2-change neighborhood function
has been provided by Luecker [1976]. Although this result is often referred to, the
proof has never been published. In Section 2.1 we defined the k-change neighbor-
hood of a tour as the set of tours that can be obtained by replacing at most k edges.
Alternatively, this neighborhood is also defined in the literature as the set of tours
that can be obtained by replacing exactly k edges. The result of Luecker [1976]
trivially translates to any k > 2 for our definition of k-change. Chandra, Karloff &
Tovey [1999] generalize the result of Luecker [1976] to any k > 2 for the latter alter-
native definition of k-change. Their proof is based on the proof of Luecker [1976]
given in Section 6.2.1.

The question of whether we can implement 2-Opt in such a way that it only
needs a polynomial number of iterations to reach a local optimum is still unan-
swered. Nevertheless, for EUCLIDEAN TSP Chandra, Karloff & Tovey [1999] prove
that if the n cities are uniformly distributed points in the unit square, then the ex-
pected number of iterations required by 2-Opt is O(n'®logn), regardless of the piv-
oting rule that is used. Punnen, Margot & Kabadi [2003] prove for SYMMETRIC TSP
that if we apply the best-improvement pivoting rule, then 2-Opt finds in polynomial
time a tour 7T that is no worse than the average cost of any tour, even though T need
not be locally optimal.

Theorem 6.7 is due to Van Leeuwen & Schoone [1981]. They prove that in
O(n®) steps a tour can be transformed into a tour that does not contain edges that
touch, intersect, or overlap, where in each step the tour length is decreased. Unlike
Theorem 6.7, they allow multiple cities to lie on a straight line, but they do not
require that in each step a 2-change is performed.

For MULTIPROCESSOR SCHEDULING with the move neighborhood function,
Brucker, Hurink & Werner [1997] prove that, if we assume a pivoting rule that al-
lows any job from a critical machine i to move to a machine with minimum load and
not, as in Theorem 6.8, only a job from i with largest possible processing require-
ment, then iterative improvement requires O (n?) iterations to reach a local optimum
(see also Exercise 1). Hurkens & Vredeveld [2003] and Vredeveld [2002] show that
this bound cannot be improved for m = 2 because in that case the algorithm may
need Q(n?) iterations when using such a pivoting rule. This result can easily be
generalized to any m > 2.
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For a similar pivoting rule, Vredeveld [2002] shows that Q||Cmax With the move
neighborhood function is guaranteed to find a local optimum in (O(n*m) iterations.
Hurkens & Vredeveld [2003] and Vredeveld [2002] derive that if the pivoting rule
only selects a job from a critical machine with maximal possible processing require-
ment, then the bound on the number of required iterations improves to O(nm). We
proved Theorem 6.8 in a similar way.

In Section 6.2.2 we introduced tight PLS-reductions for proving that a local
search problem may induce transition graphs with an exponentially large potential.
The notion of tight PLS-reductions has been introduced by Schéffer & Yannakakis
[1991]. We used a slightly more general definition in the sense that Schiffer &
Yannakakis [1991] require for the third condition in Definition 6.10 that the dis-
tance from s; to 53 is either zero or one. We use our generalization in the proof of
Theorem 6.10.

Tight PLS-reductions are also used to derive the complexity of the standard local
optimum problem. This is the problem of determining for a given initial solution a
local optimum that can be derived from it by iterative improvement. In other words,
we are given a local search problem instance I = (S, f,N) and an initial solution
s € § and we are asked to find a sink of the transition graph of I that is reachable
from s. Papadimitriou, Schiffer & Yannakakis [1990] prove that the standard local
optimum version of a tightly PLS-complete problem is PSPACE-complete, which is
an even stronger indication of intractability than NP-completeness [Garey & John-
son, 1979]. In Section 6.2.2 we mentioned that the polynomial-time requirement in
the first condition of Definition 6.10 of a tight PLS-reduction is not needed to prove
that local search problems may induce exponentially large transition graphs. The
requirement is, however, used to prove this PSPACE-completeness result.

From the tight PLS-completeness of STABLE CONFIGURATION [Schiffer &
Yannakakis, 1991], as defined in Appendix C, it follows that iterative improvement
with the flip neighborhood function may require an exponential number of iterations
in order to arrive at a stable configuration for a Hopfield network, regardless of the
pivoting rule used. This result has already been proved by construction by Haken
[1989].

Finally, we refer to Tovey [1997] for a discussion of worst-case and average-
case results on the time complexity of local search for well-structured neighborhood
graphs, such as hypercubes, that are, however, not implied by specific combinatorial
optimization problems.

6.4 Exercises

1. Theorem 6.8 states that iterative improvement runs in O(nm) iterations for MUL-
TIPROCESSOR SCHEDULING with the move neighborhood function if the pivot-
ing rule is used that selects a job with the largest possible processing requirement
on a critical machine to be moved to a machine with minimum load. Suppose
that we use the alternative pivoting rule in which an arbitrary job from a critical
machine is selected to be moved to a machine with minimum load.
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a) Prove that between two moves of the same job j, at least one job (possibly
job j) has been moved for the last time.

b) Use the result of (a) to derive an upper bound on the number of iterations
required by iterative improvement.

2. Consider the exact neighborhood function for MINIMUM SPANNING TREE given
in Theorem 5.1, i.e., consider the neighborhood function in which a spanning
tree T' is a neighbor of a spanning tree T if and only if it can be obtained by first
adding an arbitrary edge to T, which produces a cycle ¢, and by next deleting an
arbitrary edge from cycle c.

Prove that if iterative improvement uses this neighborhood function, it finds a
globally optimal solution in O(nm) iterations for a graph with n nodes and m
edges.

3. Prove the following statements, where we refer you to Appendix C for the defi-
nitions of the local search problems.
a) POS NAE MAX-3SAT/flip e<(jgn¢ MAX-CUT/Mlip.
b) MAX-CUT/flip e<(jghy STABLE CONFIGURATION.
€) MAX-CUT/flip e<(jghe UGP/swap.
d) MAX-CUT/flip o<(jgne MAX-2SAT/flip.

€) POS NAE MAX-3SAT/flip o<jgn PURE NASH EQUILIBRIA IN CONGESTION
GAMES.



Metaheuristics

Despite the complexity results presented in Chapter 6, iterative improvement is of-
ten able to compute a locally optimal solution relatively quickly. Furthermore, the
quality of such a solution is generally good. However, only a small fraction of the
local optima are usually really close to optimality and the worst local optima may be
of a relatively poor quality. One way to obtain higher-quality solutions is to resort
to a more powerful neighborhood function, although this may involve more compu-
tation time. This can, for instance, be achieved by applying variable-depth search,
which we discussed in Section 2.5, or, in the case of k-Opt for TSP, by choosing a
larger value of k. An alternative approach is not to use iterative improvement, but
a metaheuristic that, unlike iterative improvement, does not stop at the first local
optimum it encounters. Several such metaheuristics have been introduced. They
can be classified into two categories: those that perform a single long walk in the
neighborhood graph, thereby using some kind of mechanism to escape from local
optima, and those that perform multiple walks in the neighborhood graph.
Representatives of the first strategy are characterized by their strategy for per-
forming non-improving moves. This is required to prevent them from stopping at a
local optimum. The most popular metaheuristics falling into this category are simu-
lated annealing and tabu search. These two algorithms are discussed in Sections 7.1
and 7.2. Simulated annealing is a randomized algorithm that accepts any deteriora-
tion with a positive probability, while tabu search is in its basic form deterministic
and enforces a move to a neighbor that leads to the smallest cost deterioration in the
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case that a cost-improving neighbor does not exist. Tabu search uses a memory to
keep track of the solutions it visited recently to avoid revisiting them.

In Sections 7.3 and 7.4 we present metaheuristics that prevent stopping at a local
optimum by performing multiple walks in the neighborhood graph.

We do not aim to give a complete overview of the local search metaheuristics
that are used, but restrict ourselves to presenting the basic versions of the most popu-
lar ones. We also do not elaborate on practical guidelines to apply the metaheuristics
discussed. However, we stress that a successful application of a metaheuristic de-
pends heavily on how well it is tuned to the problem at hand. References to more
detailed treatments of the metaheuristics are given in the bibliographical notes at the
end of this chapter.

We adopt the same notational conventions as in Section 1.1. This means that S
and f together define a problem instance of an arbitrary combinatorial optimization
problem and that N gives a neighborhood function for S. To simplify the presenta-
tion we restrict ourselves without loss of generality to minimization problems.

7.1 Simulated Annealing

Consider iterative improvement with the first-improvement pivoting rule, where a
neighbor of a solution s is selected uniformly at random from its neighborhood
N(s). Hence, at a solution s, each neighbor s’ € N(s) is generated with a probability
of 1/|N(s)| and the first generated solution s’ that has better cost than s is accepted,
where accepting solution s’ means that it replaces s as the current solution. The
algorithm stops if it arrives at a local optimum.

A naive modification to this iterative improvement implementation to allow non-
improving moves is to simply accept each suggested move, regardless of the re-
sulting change in cost. However, the resulting algorithm, which is called random
search, performs a random walk through the neighborhood graph and will conse-
quently show a poor performance as the fraction of good solutions in the exponen-
tially large solution space is generally small.

A possible improvement over random search is to accept a move from solution
s to s’ if and only if the increase in cost is strictly smaller than a threshold ¢, which
is formalized by f(s") — f(s) < ¢. The question now is how to choose a suitable
threshold. On the one hand, we prefer a large threshold to enable us to explore
different parts of the solution space; but, on the other hand, a small threshold has
the positive effect of guiding the search to areas in the solution space where the
good solutions can be found. To enable both qualities we introduce the possibility
of letting the threshold depend on the iteration in which it is inspected, i.e., each
iteration k has its own threshold #. Then, by starting with a large threshold that
decreases as the algorithm proceeds, we expect the algorithm to first look globally
for good parts in the neighborhood graph and to gradually restrict its view so that
it ultimately converges to a high-quality locally optimal solution. The resulting
algorithm is called threshold accepting.

Simulated annealing is a randomized version of threshold accepting in which
the threshold is a random variable. While in threshold accepting a fixed threshold #;
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is specified for each iteration k, we only specify the expected value c; of #; in simu-
lated annealing. More specifically, the actual threshold used is taken randomly from
the interval (0,o0) according to an exponential distribution with parameter 1/cy.
By definition, this means that the distribution function of threshold #; is given by
F(x) =TP{t; <x} =1 —exp(—x/c¢) for x > 0. Using this distribution, it follows
that if the cost of a solution s’ is A = f(s") — f(s) larger than the cost of solution s,
then the probability of accepting s’ from s is given by

P{accept s’} =IP{A <1} =1 — F(A) = exp <_fk>

if A > 0 and by 1 if A < 0. In other words, we obtain that a solution s’ is accepted
from s at iteration k with an acceptance probability that is given by

, | if £(s') < f(s),
IP{accepts'} = exp (f(s)_f(sl)) if £(s') > f(s).

The parameter c, which gives the expected value of the threshold, is called the
control parameter or the temperature. The latter term is a result of the analogy with
the physical annealing process discussed at the end of this section.

The difference in strategy for accepting non-improving moves in threshold ac-
cepting and simulated annealing is visualized in Figure 7.1. The former algorithm
accepts a solution if and only if it yields an increase in cost of less than the threshold,
while simulated annealing is capable of accepting any solution s, regardless of the
resulting increase in cost. However, the larger the increase in cost, the smaller the
probability that s’ is indeed accepted by simulated annealing. To illustrate this we
observe that, as the probability of accepting a cost increase of m times the expected
value ¢y of the threshold is given by e™™, a deterioration, for instance, of 20cy is
accepted with a negligible frequency of about one in half a billion.

The simulated annealing algorithm is summarized in Figure 7.2. The algorithm
starts by constructing an initial solution. From this solution a walk is initiated
through the neighborhood graph. Being at solution s, it first selects a candidate
solution s" from N(s) to replace it. Generally, the candidate is taken uniformly at
random from N(s). If s’ is better than s, then the algorithm moves to s'. Otherwise,
it moves to s’ with probability

exp (f(S) —f(S’)> _

Ck

This can be implemented by comparing the value of this expression with a random
number generated from the uniform distribution on the interval [0, 1). The algorithm
stops if a given stop criterion is met. A possible stop criterion used in practice is an
upper bound on the number of successive iterations for the algorithm at the same
solution value.

An important factor for the performance of simulated annealing is the cooling
schedule used. The cooling schedule specifies the sequence cy,cz,... of control
parameter values. For threshold accepting, we have already argued that we prefer
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Figure 7.1. Acceptance probability of a solution s' from a solution s for simulated
annealing and threshold accepting in the case where the expected value c; of the
randomized threshold used in simulated annealing is equal to the fixed threshold #
used in threshold accepting.

to accept large deteriorations with a frequency that gradually decreases during the
execution of the algorithm. Therefore, c; is defined in such a way that it is non-
increasing in k and that it approaches zero for k — co. As simulated annealing
reduces to iterative improvement for ¢, close to zero, the algorithm ultimately ends
up in a local optimum. We note that in many practical cooling schedules the control
parameter is not decreased after each iteration, but is kept constant for a considerable
number of iterations before it is decreased.

Unlike with iterative improvement, it is generally not useful to spend much time
on constructing a high-quality initial solution as this solution has hardly any effect
on the final solution. This follows from the observations that at high values of
the control parameter the algorithm roughly resembles random search and that the
diameter of a neighborhood graph is generally relatively small. In Theorems 4.2
and 4.4 the latter claim is substantiated for TSP with the node-insertion and 2-change
neighborhood functions.

Simulated annealing finds its origin in the analogy between the solving of a
combinatorial optimization problem and the physical annealing process of solids.
In condensed matter physics, annealing is known as a thermal process for obtaining
low energy states of a solid in a heat bath. The annealing process starts by melting
the solid in the heat bath, in which case the particles are arranged randomly. Next,
the temperature of the heat bath is carefully decreased, which results in a minimum
energy state of the solid.

The evolution of a solid in a heat bath to thermal equilibrium is simulated by
the Metropolis algorithm. We can use this algorithm for solving a combinatorial
optimization problem by assuming the following equivalences between a combina-
torial optimization problem and a physical many-particle system. The solutions of
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algorithm Simulated annealing

begin
s := some initial solution;
k:=1;
repeat

generate an s’ € N(s);
if f(s") < f(s) thens:=+s
else
if exp (f '(S):,kf (S’)) > random|0, 1) then s := s';
k:=k+1;
until stopcriterion;
end;

Figure 7.2. Simulated annealing algorithm for a minimization problem.

the optimization problem are given by the states of the system, and the cost of a
solution is given by the energy of the corresponding state. This turns the Metropolis
algorithm into an execution of simulated annealing in which the control parameter
is assumed to be constant.

An appealing theoretical property of simulated annealing is that it can be proved
to asymptotically converge to the set of globally optimal solutions. Proving this
property is the subject of Chapter 8.

7.2 Tabu Search

Like simulated annealing, tabu search can in a sense be considered as a general-
ization of iterative improvement. However, the algorithms are based on a differ-
ent pivoting rule. While simulated annealing uses a pivoting rule that resembles
first improvement, tabu search applies a variant of the best-improvement pivoting
rule. Hence, as a starting point, consider iterative improvement with the best-
improvement pivoting rule.

An obvious strategy for the algorithm to escape from local optima is to drop the
condition that a move is only performed if it leads to an improvement. This means
that instead of stopping at a locally optimal solution, we move to a neighbor that
results in the smallest increase in cost. However, a straightforward application of
this strategy results in a high risk of returning to this same local optimum, either
immediately or within a few steps. To restrict this undesirable behavior, which in
Section 1.1 we called cycling, tabu search keeps a trabu list T of the recently visited
solutions and it does not allow a return to any of the solutions in the list. In this
way, cycles of length at most m can be prevented by using a tabu list of length m.
We note that a trade-off has to be made when choosing m. Short tabu lists may
not prevent cycling, whereas long tabu lists may lead to an excessive restriction of
neighborhoods.



140 7. Metaheuristics

Although the tabu list approach discussed seems to be reasonable, it is generally
not effective in practice since a lot of storage is required to keep a list of complete
solutions and it is too time-consuming to check whether a solution is admissible
in view of the high frequency at which the check has to be performed. One there-
fore often resorts to only keeping track of the last m transformations that have been
performed and prohibiting the reverse of these transformations. For instance, for
2-change this means that the tabu list 7 contains the last m pairs of edges that have
been selected for a 2-change. Alternatively, one can also store in 7' some key fea-
tures of the last m solutions visited.

Obviously, the simplification of the tabu list results in a loss of information. It
may no longer be guaranteed that a cycle of length at most m will not occur. A sec-
ond negative consequence may be that unvisited solutions can obtain a tabu status.
To prevent us from missing attractive solutions as a result of the latter problem, tabu
search is equipped with a mechanism to overrule a tabu, called aspiration criteria.
If a solution is tabu, then it may still be accepted if it satisfies one of the aspiration
criteria that are defined for the algorithm. Almost all tabu search implementations
use the obvious aspiration criterion that they may always move to a solution bet-
ter than the best one found so far. Another useful aspiration criterion is that if all
neighbors have a tabu status, which implies that we cannot move to a subsequent
solution, then the tabu status of at least one neighbor is revoked.

We now arrive at the basic tabu search algorithm given in Figure 7.3, where
a solution s’ is said to be admissible if a move from s to s" is not prohibited by

algorithm Tabu search

begin
r=[]
s := some initial solution;
Sbest := S5
repeat
find the best admissible s' € N(s);
if £(5") < f(Spest) then speqe 1= 5';
si=s";
update tabu list T';
until stopcriterion;
end;

Figure 7.3. Tabu search algorithm for a minimization problem.

the tabu list T or if it is allowed because one of the aspiration criteria is satisfied.
We emphasize that, unlike the iterative improvement and simulated annealing algo-
rithms formalized in Figures 1.1 and 7.2, tabu search keeps track of the best solution
encountered, spest. For iterative improvement, this is obviously redundant. Further-
more, it is not essential for simulated annealing because the algorithm converges to
the set of globally optimal solutions, which implies that it generally finds its best



7.3. Random Restart, GRASP, and Iterated Local Search 141

solution at the end of its execution. For tabu search, however, it is an essential part
of the algorithm. We nevertheless note that in simulated annealing implementations
the best solution encountered is usually also stored as it is a potential improvement
that can easily be implemented.

Simulated annealing may not be stopped at any desired moment in time. Be-
cause the control parameter has to converge to a value close to zero to obtain a
meaningful implementation, the cooling schedule needs to be tuned to the time
available for deriving a solution. Tabu search, on the other hand, can safely be
interrupted, which means that it can use the amount of elapsed computing time as
a stop criterion. An alternative and frequently used stop criterion for tabu search is
an upper bound on the number of successive iterations in which no improvement is
obtained over the best solution found.

A tabu list can be considered as a short-term memory of tabu search. Often, tabu
search also makes use of a longer-term memory to achieve intensification and/or
diversification. The aim of intensification is to explore more thoroughly the parts
of the solution space that seem to contain promising solutions. For instance, if
some attractive solutions derived by the algorithm show some common features,
then this may give rise to the assumption that these features are characteristic of
good solutions. To exploit this assumption, we can fix these features for a number
of iterations to search more effectively for high-quality solutions.

The opposite of intensification is diversification. In spite of the tabu list, tabu
search may suffer from the tendency to explore only a small part of the solution
space, such that the part containing the really good solutions may be overlooked.
Diversification aims to prevent this. Whether or not tabu search restricts itself to a
particular part of the solution space is usually detected by recording the number of
iterations that some features are present in the solution considered. We can enforce
the algorithm to explore new areas of the solution space by, for instance, introducing
rare features into the solution.

We note that we have already seen the basic idea of tabu search in Section 2.5,
where the blocking rule plays the role of a tabu list in variable-depth search. We
conclude our discussion on tabu search by emphasizing that, to make the approach
successful, it is essential to devote serious effort to filling in the details of the algo-
rithm in order to obtain a good performance.

7.3 Random Restart, GRASP, and Iterated Local Search

An obvious strategy for deriving higher-quality local optima than obtained by a
single run of iterative improvement is to run the algorithm multiple times. We use
the term multistart to denote algorithms that are based on this strategy. Examples of
multistart algorithms are given in this and the next section.

A trivial extension of iterative improvement is random restart, in which multiple
runs of iterative improvement are performed, each initialized with a different ran-
domly selected starting solution. Although it is an adequate strategy for overcoming
the problem of accidentally ending up in a poor local optimum, it does not help us to
find one of the sparse local optima that are very close to optimality. For a single run
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of iterative improvement we have already emphasized the importance of starting in
a high-quality initial solution so that iterative improvement will explore a promising
part of the solution space. This increases the chance of ending up in a high-quality
local optimum, and it will reduce the running time of the algorithm. In conformity
with this, we can improve random restart by using a more clever strategy for initial-
izing the multiple runs of iterative improvement than just picking a random solution.
We now discuss an example of multistart that is based on this idea.

Consider TSP and suppose that we only want to run iterative improvement once.
Then, the nearest-neighbor algorithm is a candidate to construct an initial tour. This
algorithm constructs a tour starting in city ¢; = 1. It extends the partially defined
tour T = (c;) by repeatedly adding an unvisited city to the tour in the following way.
In iteration i with 1 <i < n the tour T = (cy,¢2,...,¢;) is extended with the city c; 1
not in T that has the shortest distance from city c;, i.e., for which d, - is minimal.

Whether the nearest-neighbor algorithm is also applicable in multistart depends
on the pivoting rule used in the iterative improvement implementation. If the pivot-
ing rule used allows a random neighbor with better cost to be chosen, which is often
the case when one applies first improvement, starting from the same solution can
still result in different local optima. However, by initializing each run of iterative
improvement with the same tour, we run the risk of exploring only a small part of
the solution space. Therefore, it is often preferable to use a randomized algorithm
that can generate different initial tours. Nearest neighbor can easily be transformed
into such an algorithm by extending a partially defined tour T = (cy,c3,...,¢;) in
iteration / with a random city from the candidate list L,,(t) for some given positive
integer m, where L,,(T) contains the m cities not in T that are closest to the last city
¢i. By choosing m appropriately, diversity of the initial solutions can be traded off
against their (expected) quality. In the two extreme cases, we find that a random
tour is generated for m = n and that the original deterministic algorithm is obtained
form=1.

In the example discussed, we implement multistart by transforming a greedy
constructive algorithm into a randomized algorithm by using candidate lists. In the
literature, such a local search algorithm is also called Greedy Randomized Adap-
tive Search Procedure (GRASP). Alternatively, we can also generate a new initial
solution for iterative improvement by perturbing the locally optimal solution just
derived. This is called iterated local search. For instance, when we have arrived
at a 2-change optimal tour, we can perform an improving or random k-change with
k > 3 to obtain a high-quality tour that we can use as the initial solution for the next
run of iterative improvement.

As a generalization of iterated local search, we can also generate new initial
solutions by combining multiple derived local optima. This is done in genetic local
search, which is the subject of the next section.

7.4 Genetic Local Search

In this section we discuss genetic local search, which is a genetic algorithm incor-
porating local search. As a genetic algorithm is inspired by the natural evolution
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process, we first discuss briefly how it is generally believed that species evolve over
time. The two key mechanisms in evolution are selection and variation. Selection is
achieved in nature by a process called survival of the fittest, meaning that the indi-
viduals of a population that are better adjusted to their habitat have a higher chance
of surviving. These individuals also have a higher chance of mating, which implies
that their genotype is more likely to remain in successive generations of the popula-
tion, where the genotype of individuals refers to the inheritable information stored
in chromosomes. As a result, the population moves towards a better overall fitness.

Variation causes new, hopefully better, genotypes to be added to the population.
Variation is established by means of recombination and mutation. Recombination
is a result of sexual reproduction of two parents and corresponds to combining the
genotype of the two parents into a new genotype for their child. Mutation, on the
other hand, is asexual and corresponds to random perturbations of the genotype of
an individual. Hence, while recombination mixes the genetic material that occurs in
a population, mutation can create new genetic material.

Genetic algorithms are based on natural evolution, where each individual rep-
resents a solution and the fitness of an individual is given by the cost of the corre-
sponding solution. The algorithm starts by generating N initial solutions for a given
positive N. This set forms the initial population Py. The genetic algorithm now
repeatedly generates a new population of size N until a given stop criterion is met.
Let P, be the population derived in iteration ¢. Population P, is obtained from P,_
by first selecting a subset of the solutions in F,_j. This selection is guided by the
cost function. Often it is done probabilistically, which means that the better a solu-
tion the higher its chance of being selected. Next, new solutions are created from
the selected ones by recombination and/or mutation. As recombination operator we
can use any algorithm that constructs a solution from a number of parent solutions,
where the number of parents may be larger than two, and the mutation operator
corresponds to an algorithm for changing a single solution. The new solutions are
added to the population. If population F, has size N again, then its construction has
been completed. As the stopping criterion for the algorithm we can use an upper
bound on the number of populations generated. Alternatively, one can, for instance,
assume a maximum number of iterations in which no improvement on the best so-
lutions is found.

In the algorithm described, offspring solutions obtained by recombination and/or
mutation are added to a population without removing their parent solutions. It is also
possible that the set of offspring solutions substitutes some or all parent solutions
from which they originate. As a solution may be selected for recombination multiple
times, this need not conflict with keeping the population size constant.

We can use genetic algorithms to derive high-quality local optima if we define
the mutation operator as an execution of iterative improvement and the recombina-
tion operator as an algorithm for combining two or more local optima into a new
solution. The resulting algorithm, which is called genetic local search algorithm or
memetic algorithm, can be considered as multistart, where except for the first N runs,
each run of iterative improvement is initialized with a solution that is constructed
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from previously derived locally optimal solutions by means of the recombination
algorithm. By choosing a recombination algorithm that produces offspring solu-
tions that are genetically closely related to their parents, we expect that the cost of
an offspring is not too much higher than the cost of its parents. Hence, in that case
all but the first N runs of iterative improvements are initialized with good quality
solutions. The genetic local search algorithm is given in Figure 7.4. Note that in the
algorithm an offspring solution is added to the population if it is obtained by recom-
bination and that it substitutes its parent solution if it is obtained by mutation. In the

algorithm Genetic local search

begin
Py := set of N solutions;
/* Mutation */
replace each s € Py by Iterative Improvement(s);
t:=1;
repeat
Select P, C P,_y;
/* Recombination */
extend P; by adding offspring;
/* Mutation */
replace each s € P; by Iterative Improvement(s);
t:=t+1;
until stopcriterion;
end;

Figure 7.4. Genetic local search algorithm for a minimization problem.

following two examples we give examples of possible recombination operators for
TSP.

Example 7.1. We can combine two parent tours T; and T; into a single offspring
tour T in the following way, where we assume without loss of generality that city
1 is the first city in both tours. First of all, a random subpath p in 15 is selected.
The tour T is then obtained by first traversing path p and next visiting all other
cities in the order in which they appear in T;. The first city that is visited after p
is chosen randomly. If we consider SYMMETRIC TSP, then we choose the direction
of path p and tour t; at random. Figure 7.5 visualizes this recombination for tours
T =(1,2,3,4,5,6,7,8) and 1, = (1,5,8,6,2,4,7,3) and path p = (4,7,3). a

Example 7.2. In Section 7.2 we have already mentioned that if good solutions share
some common features, then this indicates that these features might be characteristic
of good solutions. Based on this observation, we can design a recombination algo-
rithm that generates an offspring tour T from any m > 2 parent tours t1,T2,...,Tn, as
follows. Let T; have the shortest length among all m parent tours. Then, we let tour
T contain an arc a from T; with a probability p, that depends on whether the other
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Figure 7.5. Example of recombining two tours into one new tour.

m — 1 parent tours have the arc. More precisely, if a tour T; with i > 1 also contains
arc a, then this results in an increase in p, by an amount that depends on the quality
of tour 1;, i.e., the shorter tour T;, the larger the effect of t; on p,. This results in a
partial tour consisting of several tour segments. These segments are then connected
randomly to construct a complete tour. O

7.5 Bibliographical Notes

As mentioned in Section 7.1, simulated annealing is inspired by the Metropolis algo-
rithm, which simulates the evolution of a solid in a heat bath at a given temperature.
The Metropolis algorithm dates back to 1953, when it was introduced by Metropo-
lis, Rosenbluth, Rosenbluth, Teller & Teller [1953]. Kirkpatrick, Gelatt & Vecchi
[1983] and, independently, Cerny [1985] were the first to use simulated annealing
in combinatorial optimization. Although we presented simulated annealing as an
elaboration of threshold accepting, this is not in conformity with its introduction.
Actually, Dueck & Scheuer [1990] presented threshold accepting as a simplification
of simulated annealing. For a more thorough discussion on simulated annealing we
refer you to Aarts & Korst [1989] and Salamon, Sibani & Frost [2002], while for
threshold accepting we refer you to Winker [2001].

As a second metaheuristic, we proposed tabu search. Although many of its
elements were already proposed before, the paper by Glover [1986] was the first to
mention tabu search explicitly. Independently, Hansen [1986] proposed a similar
approach, which he called steepest ascent mildest descent. The book by Glover &
Laguna [1997] is devoted entirely to tabu search.

The paper of Lin & Kernighan [1973], to which we referred in the bibliograph-
ical notes of Chapter 2, is an early paper that proposes random restart. The authors
use it in combination with a variable-depth search approach for tackling TSP. As
another example of multistart, we mentioned GRASP in Section 7.3. Feo & Re-
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sende [1989] were the first to define this approach explicitly. For more details on
GRASP we refer to a chapter of Pitsoulis & Resende [2002] and to the annotated
bibliography given by Festa & Resende [2002].

A survey on iterative local search is given by Lorenco, Martin & Stiitzle [2003].
The most well-known representative of this approach is the iterated Lin-Kernighan
algorithm by Johnson [1990]. In this algorithm a new run of the Lin-Kernighan
algorithm for TSP is obtained by performing a random improving double-bridge
move, which is a special type of 4-change.

Miihlenbein, Gorges-Schleuter & Kriamer [1988] introduced genetic local
search. They applied it to TSP, where they used the recombination operator pre-
sented in Example 7.1. This recombination operator has been empirically analyzed
by Ulder, Aarts, Bandelt, Van Laarhoven & Pesch [1991]. The recombination oper-
ator proposed in Example 7.2 is according to Schilham [2001].

Genetic algorithms were already known before genetic local search. The book
by Holland [1975] is considered an important early contribution to the field. For
extensive treatments on genetic algorithms we refer you to Goldberg [1989] and
Michalewicz [1992], while genetic local search is discussed in more detail in Corne,
Dorigo & Glover [1999].

Osman & Laporte [1996] present a metaheuristic bibliography with a classifi-
cation containing more than 1,400 references both on the theory and application of
metaheuristics. More recent overviews of metaheuristics are presented by Ribeiro &
Hansen [2002] and Glover & Kochenberger [2003]. We conclude with referring to
the books by Aarts & Lenstra [1997] and Michalewicz & Fogel [2000], which each
give a clear and more elaborate presentation of simulated annealing, tabu search,
genetic algorithms, and other metaheuristics.

7.6 Exercises

1. Consider the variant of threshold accepting in which we keep the threshold at a
constant value ¢.

a) Give the weakest condition on ¢ under which this variant of threshold ac-
cepting corresponds to random search.

b) Give the weakest condition on # under which this variant of threshold ac-
cepting corresponds to iterative improvement.

2. Give at least one useful aspiration criterion that is different from the ones given
in Section 7.2.

3. In Section 2.5 we applied variable-depth search to UGP. The resulting neighbor-
hood function was called Kernighan-Lin. Describe iterative improvement with
this Kernighan-Lin neighborhood function in terms of tabu search.

4. Consider tabu search with a tabu list that keeps the m most recently visited so-
lutions. Show that for any size of the solution space there exists a neighborhood
graph for which tabu search converges to the worst m + 2 solutions.
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5. Consider an iterated local search implementation for TSP that applies a single
random 4-change whenever iterative improvement using the 2-change neighbor-
hood function reaches a local optimum. Compare this approach with (a) itera-
tive improvement using 2-change and (b) iterative improvement using 4-change.
Discuss the advantages and disadvantages of the iterated local search approach
compared to these iterative improvement implementations.



Asymptotic Convergence
of Simulated Annealing

In Chapter 7 we presented several popular metaheuristics for finding high-quality
local optima. Their popularity can be attributed mainly to the many practical suc-
cesses they achieved for a wide variety of problems. An interesting question is
whether the good performance of the metaheuristics can also be supported by theo-
retical results. This is the case for simulated annealing, for which it has been shown
that it asymptotically converges to the set of globally optimal solutions if it is ap-
plied on a neighborhood graph that is finite, symmetric, and strongly connected.
This chapter is devoted to proving this result. In Section 8.6 we show that the result
does not necessarily hold for tabu search.

To put the convergence result of simulated annealing in the right perspective, we
stress that it only states that the algorithm reaches a global optimum with probability
1 after an infinite number of iterations. This means that the simple total enumeration
algorithm, which takes exponential but finite time, is more efficient when optimality
has to be guaranteed. Furthermore, if the naive random search algorithm discussed
in Section 7.1 stores its best solution encountered, then it also converges to a glob-
ally optimal solution. The relevance of the convergence result for simulated anneal-
ing is more subtle, however. It states that, when moving through a neighborhood
graph, simulated annealing searches its way to the set of globally optimal solutions.
This supports the assumption that the applied search strategy is effective.
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In this chapter we denote the problem instance on which simulated annealing is
applied by (S, f) and the neighborhood function used by N. Although the definition
of a combinatorial optimization problem allows § to be infinite, we assume S to be
finite in this chapter. Note that S is finite for all problems in NPO. Furthermore, we
assume without loss of generality that we are dealing with a minimization problem
and that S = {1,2,...,|S|}.

8.1 Mathematical Modeling

To prove the asymptotic convergence of simulated annealing (when applied to S, f,
and N), we use the fact that a run of the algorithm can be modeled as a Markov
chain. Below we give some relevant definitions from Markov theory.

Definition 8.1. A discrete-time stochastic process is a set of random variables
{X(t) |t € T}, where T is a finite or countably infinite set of time points. If X (t) =,
then we say that the process is in state i at time #. The set of all possible states is
called the state space. O

Definition 8.2. A Markov chain is a discrete-time stochastic process {X(¢) |t € T}
with T = {0, 1,...} either finite or infinite, and it has a finite or countably infinite
state space. Random variable X(0) is independent of any other random variable,
and X (r) with r > 1 only depends on X (r — 1). Hence, if we are at time # — 1, the
next state X () only depends on the current state X (s — 1) = i and not on how we
arrived in state i. Without loss of generality, we assume that the state space is given
by {1,2,...}. For any ¢t > 1 and any pair i, j of states, the transition probability
P;j(1) is defined as the probability that, if we are at time 7 — 1, the next state is j
given that the current state is i, i.e., P;;(t) = IP{X(r) = j | X (t — 1) = i}. The matrix
P(t), in which the (i, j)th element equals the transition probability P;;(z) is called
the transition matrix. a

Definition 8.3. A Markov chain is said to be finite if it is defined on a finite state
space. a

Definition 8.4. If the transition probabilities in a Markov chain are independent of
the time pointz, i.e., if P(t) = P(¢') for all #,#' > 0, then the Markov chain is said to
be homogeneous. Otherwise, it is inhomogeneous. O

A convenient representation of a transition matrix P is given by the labeled directed
graph D = (V,A), in which the node set V corresponds to the state space of the
Markov chain and which contains a directed arc (i, j) if and only if P;; > 0. The
label of an arc (i, j) is defined as P;;. We call D the state transition graph of P.
To illustrate this, Figure 8.1 gives the state transition graph defining the transition
matrix

(8.1)
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Figure 8.1. State transition graph corresponding to transition matrix 8.1.

Observation. A homogeneous Markov chain models a random walk in the state
transition graph associated with its transition matrix where, at node #, an arc (i, j) is
taken with a probability given by its label. O

Let a;(t) with r > 0 define the probability of being in state i at time 7 for a given
Markov chain, i.e., ¢;(t) =IP{X(z) = i}. Then we have
ait)= Y, alt—=1)Py),
1e{1.2,...}
where {1,2,...} denotes the state space. Hence, the vector a(t) = (a;(t),az(¢),...)

that specifies the probability distribution of the states at time ¢, can be derived from
the initial probability distribution a(0) via

alt) = a(O)ﬁP(z). (8.2)

For example, if in the homogeneous Markov chain based on the state transition
graph of Figure 8.1 the initial state is selected uniformly at random, which means
a(0) = (; , é, ;), then the probability distribution after five time units is given by
a(0)P> ~ (0.03,0.04,0.93). Hence, if we perform a random walk of five steps in
the transition graph of Figure 8.1, then we have a probability of 0.93 of ending up
in state three.

The simulated annealing algorithm continuously attempts to replace a current
solution by one of its neighbors. One such attempt is called a transition. This
process can be viewed as a finite inhomogeneous Markov chain. The state space
corresponds to the set S of solutions, random variable X (0) gives the starting solu-
tion, random variable X (k) with k > 1 gives the solution visited in the kth iteration
of simulated annealing, and a single step in the Markov chain corresponds to a tran-
sition of the simulated annealing algorithm. To use the concept of a Markov chain,
we need a transition in simulated annealing to depend only on the current solution,
which is indeed the case.

The transition matrix associated with a run of simulated annealing is determined
by the strategy used for generating neighboring solutions and for accepting a solu-
tion once it is generated. These two strategies are specified by the generation and
acceptance matrices, respectively. The transition and acceptance matrices depend
on the iteration number & via the control parameter c; and the generation matrix is
independent of k. This is made explicit in our notation.
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Definition 8.5. The generation matrix G defines for each pair of solutions i, j € S
the probability of generating solution j from solution i. An entry G;; is called the
generation probability and satisfies G;; > 0 if and only if j € N(i). |

Definition 8.6. The acceptance matrix A(cy) defines for each pair of solutions
i,j € S the probability of accepting solution j from solution i in the kth iteration
of the simulated annealing algorithm. Specifically, we have that the acceptance
probability A;j(cy) is given by

P L VU ES 0}
ij(Ck) - exp (f(l);kf(J)) if f(]) > f(l) (8.3)
O

Definition 8.7. The transition matrix P(cy) defines for each pair of solutions i, j € S
the probability of moving from solution i to solution j in the kth iteration of the
simulated annealing algorithm. The transition probability P;j(cy) is given by

GijAij(ck) ifi#j,
Pile) =4 1 - Y Puler) ifi= .
1ES#i

d

We note that the generation and transition matrices are stochastic, while the accep-
tance matrix is not stochastic.

Definition 8.8. A vector v = (v, v2,...,v,) is called stochastic if its components
are non-negative and add up to one, i.e., v; > O forall i and ¥/, v; = 1. A matrix is
called stochastic if each row is a stochastic vector. O

Example 8.1. To illustrate the modeling of simulated annealing as a Markov chain
consider the application of the algorithm on the neighborhood graph given in Fig-
ure 8.2(a). An obvious strategy for generating neighboring solutions is to generate
all neighbors of a solution i with an equal probability of 1/|N(i)|. This results in the
generation matrix

00 ) ;
o0 ) ]
G:1100,
T
5 5 00

where the four solutions are numbered such that f(i) = i. The generation matrix is
visualized in Figure 8.2(b). The acceptance matrix

L oexp(—.) exp(=2) exp(-))

R 1 exp(—1) exp(-2)

Ale) = 1 1 1 exp ()
1 1 1 1
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©) (d)

Figure 8.2. (a) Neighborhood graph, where the numbers inside the nodes indicate
the cost of the solutions. (b) Generation matrix. (c) Acceptance matrix, where the
label of an arc is only given if it is different from one. (d) Transition matrix.

follows directly from (8.3) and is depicted in Figure 8.2(c). Using G and A(c), we
can now determine the transition matrix

(03] (C) 0

o

(05) C)

P(c) = ~) )

—

N = =
B =D —

where o (c) is given by 1 — éexp (—3) — éexp (—Z) and op(c) is given by
1—Jexp(—"')—2exp(—2). The associated state transition graph is given in Fig-
ure 8.2(d). At a fixed value of the control parameter, a run of simulated annealing
now corresponds to a random walk in this state transition graph. O

This concludes the mathematical modeling of simulated annealing. We can now
formalize the asymptotic convergence of simulated annealing to the set S* C S of
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optimal solutions by
]}im P{X(k)eS'}=1. (8.4)
—yo0

It is our goal in this chapter to prove this equation for the case that the generation
matrix implies a symmetric, strongly connected neighborhood graph and that the
control parameter is lowered slowly enough with limg_,.. cx = 0.

In Section 7.1 we mentioned that in many practical cooling schedules the con-
trol parameter ¢ is kept constant for a considerable number of iterations after each
decrease in value. In this case the algorithm can be viewed as a sequence of ho-
mogeneous Markov chains, one for each different value of the control parameter.
In Section 8.3 we prove that if the homogeneous Markov chains are all of infinite
length, then simulated annealing converges asymptotically to the set of optimal so-
lutions. In Section 8.4 we then derive some statistical results for this homogeneous
model. Of course, it is not possible to implement simulated annealing such that it
consists of a sequence of infinitely long Markov chains. However, in Section 8.5 we
show that if the algorithm converges to the set of optimal solutions in this artificial
model, then we can define a cooling schedule that realizes asymptotic convergence
to the set of optimal solutions for a real run of simulated annealing, i.e., for which
the resulting inhomogeneous Markov chain satisfies (8.4).

The proof of the convergence result of simulated annealing uses the fact that the
probability distribution of the finite homogeneous Markov chain associated with a
run of simulated annealing at some fixed value of the control parameter converges
to a ‘stationary distribution’. This claim is proved in Section 8.2.

8.2 Stationary Distribution

Consider the state transition graph of Figure 8.1. Starting in state three, the corre-
sponding Markov chain always remains in this state. This means that the probability
distribution ¢ = (0,0, 1) describes a stable situation: once a random variable X (¢) in
the Markov chain satisfies this distribution, all subsequent random variables X (¢')
with ¢/ >t satisfy this distribution as well. Such a distribution is said to be stationary.

Definition 8.9. A stochastic vector q is a stationary distribution of a homogeneous
Markov chain with transition matrix P in the case that the following property holds.
If X (0) has probability distribution ¢, then each random variable X (¢) with # > 0 has
probability distribution g. Formally, this means that g satisfies g = gP, i.e., g is the
left eigenvector of P with eigenvalue 1. |

Theorem 8.1. A finite homogeneous Markov chain has at least one stationary dis-
tribution.

Proof. See, for instance, Theorem 8.3.11 in Berman & Plemmons [1979]. O

Using (8.2) it can easily be verified that if the probability distribution of a finite ho-
mogeneous Markov chain converges to a given distribution g, i.e., if ¢ = lim,_,e. a(t)
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exists, then g has to be a stationary distribution:
. . ! . -1
q = tll)rga(t) = }LTQ“(O)P = tlgga(O)P’ P
= lim a(0)P"'P = gP.
' —oo

Suppose that we apply simulated annealing to a strongly connected neighbor-
hood graph. We show for the probability distribution of the homogeneous Markov
chain associated with the algorithm at a given value of the control parameter that it
not only converges to a stationary distribution, but that this stationary distribution is
also independent of the initial probability distribution a(0) of the states (solutions).
More formally, we show that the Markov chain is ‘strongly ergodic’, which means
the following.

Definition 8.10. A Markov chain is called strongly ergodic if a stochastic vector g
exists, such that for all # > 0 and each pair i, j of states we have

gi= limIP{X (') =i| X(t) = j}. (8.5)
' —oo
O

As mentioned above, a finite homogeneous Markov chain has the property that if
it is strongly ergodic, then the probability distribution to which it converges is a
stationary one. The following theorem states that this stationary distribution is also
the only stationary distribution of the Markov chain.

Theorem 8.2. If a finite homogeneous Markov chain is strongly ergodic, then the
stochastic vector q to which its probability distribution converges is its only station-
ary distribution.

Proof. Above we showed that if the probability distribution of a homogeneous
Markov chain converges to a distribution, then this distribution has to be a stationary
one. Hence, to prove the theorem, it remains to be shown that an arbitrary, strongly
ergodic, finite, homogeneous Markov chain does not have multiple stationary distri-
butions. This result follows from the observations that the probability distribution
of a strongly ergodic Markov chain converges to a unique distribution ¢ and that for
a stationary distribution ¢’ it holds that if the initial probability distribution of the
Markov chain is given by ¢, then the probability distribution of the Markov chain
remains and thus converges to this distribution, i.e., ¢ = ¢'. O

In the definition of strong ergodicity, we require that the convergence to a given
distribution ¢ is guaranteed not only for any initial probability distribution a(0), but
also for any intermediate probability distribution a(z) with # > 1. For homogeneous
Markov chains this is not a real additional constraint as their behavior does not
depend on the time unit at which they start. The constraint does, however, make
sense for inhomogeneous Markov chains, which will be discussed later on.

To prove the existence of a g satisfying (8.5) for a given homogeneous Markov
chain, the following two definitions are useful.



156 8. Asymptotic Convergence of Simulated Annealing

(a) (b)

Figure 8.3. (a) State transition graph of a decomposable Markov chain that does not
have a unique stationary distribution to which its probability distribution converges.
(b) State transition graph of a non-convergent periodic Markov chain.

Definition 8.11. A homogeneous Markov chain with transition matrix P is called
irreducible if, for each pair i, j of states, the state transition graph contains a path
from i to j, which is equivalent to saying that an n > 1 exists with (P");; > 0. O

Definition 8.12. A homogeneous Markov chain with transition matrix P is called
aperiodic if for each state i the greatest common divisor gcd(W;) = 1, where W; is
the set containing the lengths of all paths from i to itself in the state transition graph,
i.e., n € W; if and only if (P"); > 0. O

As an example, observe that the homogeneous Markov chain based on the state
transition graph given in Figure 8.1 is not irreducible as the transition graph contains
no path from state three to any other state. It is, however, aperiodic as W) = W3 = Nt
and W, = N\ {1}.

To see that the above two definitions are relevant to ensure convergence to a
unique stationary distribution, consider the two state transition graphs given in Fig-
ure 8.3. The state transition graph of Figure 8.3(a) defines an aperiodic Markov
chain that is decomposable, which means that it is not irreducible. Once the Markov
chain is in state two or three, it always stays in that state. From this observation it
follows that the probability distribution of the Markov chain converges to the sta-
tionary distribution (0, 5, ;) if we start in state one, to stationary distribution (0, 1,0)
if we start in state two, and to stationary distribution (0,0, 1) if we start in state three.

Next, consider the irreducible Markov chain defined by the state transition graph
of Figure 8.3(b). This Markov chain is periodic as all paths in the graph from a
node to itself have even length. Unlike the Markov chain associated with the state
transition graph of Figure 8.3(a), this Markov chain does have a unique stationary
distribution, namely g = (é , %) However, it converges to g only if g is also the initial
distribution of the states, i.e., if a(0) = ¢ holds. For any other initial distribution
a(0) = (p,1 — p) the distribution of the states alternates between (p,1 — p) and
(1-p,p).

The following theorem is proved in many books on Markov theory and states
that irreducibility and aperiodicity are sufficient conditions for a finite homogeneous
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Markov chain to guarantee convergence to a unique stationary distribution.

Theorem 8.3. If a finite homogeneous Markov chain is both irreducible and aperi-
odic, then it is strongly ergodic.

Proof. For proof, we refer to Feller [1950], Isaacson & Madsen [1976], and Grim-
mett & Stirzaker [1992]. O

From the theorem it follows that to prove the asymptotic convergence of simulated
annealing to a unique stationary distribution in the case that the control parameter
is assumed to be fixed, it suffices to show that the associated Markov chain is both
irreducible and aperiodic. To prove this, the following lemma is useful. It states
that once a Markov chain has been proved to be irreducible, we only have to check
whether the state transition graph contains at least one loop to conclude that it is
also aperiodic.

Lemma 8.1. An irreducible finite homogeneous Markov chain with transition ma-
trix P is aperiodic if a state i exists with P;; > 0.

Proof.  Consider an arbitrary irreducible Markov chain with P; > O for a state
i. To prove the lemma we have to show that gcd(W;) = 1 for any state j. As the
Markov chain is irreducible, we have that &,/ € Nt exist such that P;-‘i > 0 and

Pllj > 0. Hence, we get PfJTH > P;-‘iPil]- > 0. Furthermore, since P; > 0 we also have
P > PEPPL > 0. This yields that k+ 1,k +1+ 1 € W;, which implies that
indeed gcd(W;) = 1. |

Theorem 8.4. Let (S, f) be an instance of a combinatorial optimization problem
with S* # S and S finite. Furthermore, let N be a neighborhood function defined on
S that induces a strongly connected (but not necessarily symmetric) neighborhood
graph.

The finite homogeneous Markov chain associated with a run of simulated an-
nealing at a fixed value c of the control parameter is strongly ergodic, i.e., a unique
stationary distribution q(c) exists to which the probability distribution of the Markov
chain converges.

Proof. To prove the theorem it suffices by Theorem 8.3 to show that the Markov
chain is both irreducible and aperiodic. We start by proving the former property. Let
i,j € S be arbitrary. We have to prove Pl’}(c) > 0 forann > 1. As the neighborhood
graph is strongly connected, Definition 8.5 gives that a sequence sy, s2,...,s, € S of
solutions exists, such that s; =i, s, = j, and Gy, 5,,, > 0 for all 1 </ < n. Further-
more, by Definition 8.6 we have A ¢(c) > 0 for any two solutions s,s'. As aresult,

we obtain
n—1

Pl”](c) 2 H G-Y17S1+1AS17-Y1+1 (C) >0.
=1

Thus, the Markov chain is indeed irreducible.

To prove that the Markov chain is also aperiodic, it suffices by Lemma 8.1
to show that a solution i exists with P;;(c) > 0. Since the neighborhood graph is
strongly connected and since S* # S, solutions i, j € S exist with f(i) < f(j) and
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G;j > 0,1i.e., j € N(i). By the definition of P, we have

Pi(c)=1—"Y GyAulc).
18, 1#i

As Ay(c) < 1foralll € S, this gives

Pi(c) > 1-GijAij(c)— Y. Gy.
1€8,1#i,j
From f(i) < f(/) it follows that A;;(c) < 1. Hence, as by assumption G;; > 0, we
obtain
Pi(c)>1- Y Gy=0.
1€8,I#i
O

In order for Theorem 8.4 to be applied, the neighborhood graph needs to be strongly
connected. Because the theorem serves as an auxiliary result for proving conver-
gence of simulated annealing to the set of optimal solutions, it is interesting to
consider the question of whether the condition is also relevant in the context of
this convergence result. The answer to this question is in the affirmative because if
an optimal solution is unreachable from a solution, then convergence to the set of
optimal solutions can obviously not be achieved.

8.3 Homogeneous Markov Chains

Theorem 8.4 states that the probability distribution a(¢) of the solution space S con-
verges to a unique stationary distribution g(c) if simulated annealing is run at a fixed
value c of the control parameter. In this section we prove that simulated annealing
converges to the set of optimal solutions in the case that the value of the control
parameter ¢ approaches zero and is only changed after equilibrium is attained, i.e.,
after the algorithm has converged to the stationary distribution g(c). Formally, this
means that we prove

liﬁ)lq,-(c) =0 forallie S\S*. (8.6)
C.

This model of simulated annealing is not a realistic one as equilibrium is only at-
tained after an infinite number of iterations of simulated annealing. In other words,
the model views simulated annealing as a sequence of homogeneous Markov chains
of infinite length. However, the result already provides some evidence that the algo-
rithm will also converge in a realistic setting. In Section 8.5 this claim is substanti-
ated by proving that convergence in the homogeneous model implies the existence
of a cooling schedule that realizes convergence for a real run of simulated annealing.

At the end of Section 8.2 we indicated the necessity of assuming the neighbor-
hood graph to be strongly connected in order to have an asymptotic convergence of
simulated annealing to the set of globally optimal solutions. This condition alone is
not sufficient to guarantee convergence in the homogeneous model, however. This
follows from the following example.
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(@ (b)

Figure 8.4. (a) Neighborhood graph, where the numbers inside the nodes indicate
the cost of the solutions. (b) State transition graph of the transition matrix following
from the application of simulated annealing on this neighborhood graph.

Example 8.2. Consider the strongly connected neighborhood graph given in Fig-
ure 8.4(a). The solutions are numbered 1,2, and 3, and the cost of a solution is given
by its number. When simulated annealing is applied to this neighborhood graph, the
generation matrix is given by

the acceptance matrix by

A9=| 1 1 ew(-]) |,
1 1 1
and the transition matrix by
l—ep(-1)  ep(-) 0
P(c) = 0 l—exp(—)) exp(-})
1 0 0

The state transition graph corresponding to P(c) is depicted in Figure 8.4(b). By
Theorem 8.4, the homogeneous Markov chain associated with P(c) has a unique sta-
tionary distribution to which its probability distribution converges, i.e., the Markov
chain converges in distribution to the only existing stochastic left eigenvector g of
P(c) with eigenvalue 1. It can be verified that

o 1 1 exp (— 1)
TI7 24 exp(=1) 24 exp(=!) 2 +exp(-))
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is a left stochastic eigenvector of P(c) with eigenvalue 1 and thus also the unique
stationary distribution to which the probability distribution of the Markov chain
converges. For ¢ | 0, stationary distribution g(c) approaches (é, 5,0). Hence, (8.6)
does not hold: in the limiting case simulated annealing is equally likely to end up in
solution 2, which is suboptimal, as in solution 1, which is optimal. O

The main result of this section is that simulated annealing converges to the set of
optimal solutions in the homogeneous model if the neighborhood graph is not only
strongly connected but also symmetric, which means that for each pair i,j € S of
solutions we have G;; > 0 if and only if G;; > 0. Observe that the neighborhood
graph of Figure 8.4 is asymmetric. To better understand the proof, we first prove
the result for the special case that the generation matrix satisfies the stronger con-
dition G;; = Gj; for all i,j € S. As an example of this special case, consider the
2-change neighborhood function for TSP. As indicated in Section 2.1, each tour has
the same neighborhood size of 2 4+ n(n — 3) with respect to this neighborhood func-
tion. Hence, if a neighbor is selected uniformly at random, then G;; = G; holds for
alli,jesS.
The following theorem gives us an important auxiliary result.

Theorem 8.5. Let (S, f) be an instance of a combinatorial optimization problem
with §* # S and S finite. Furthermore, let N be a neighborhood function defined on
S that induces a strongly connected neighborhood graph.

If the generation matrix satisfies G;j = Gj; for all i, j € S, then the finite homo-
geneous Markov chain associated with a run of simulated annealing at a fixed value
¢ of the control parameter is strongly ergodic and the components of the unique
stationary distribution q(c) to which its probability distribution converges are given
by

qi(c) = Nol(c) exp (—fii)> 8.7)
forall i € S with
i)
No(c) = xp | — .
o(c) jezse P< c )

Proof. By Theorem 8.4, it suffices to show that the stochastic vector g(c) defined
by (8.7) is a stationary distribution, i.e., a stochastic left eigenvector of P(c) with
eigenvalue 1. To this end, we only need to check whether for any i, j € S the ‘detailed
balance equation’

qi(c)P;j(c) = qj(c)Pji(c) (8.8)
holds. This means that at equilibrium the probability that the Markov chain per-
forms a transition from state i to state j is equal to the probability that it performs a
transition from state j to state i. This can be seen as follows. If (8.8) holds, then

Y ai(c)P;j(c) = Y, q;(c)Pjilc)
JjES JjES

also holds. As P(c) is stochastic, we have ¥ csPij(c) = 1. This implies that
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gi(c) = X jesqj(c)Pji(c) and thus g(c) = g(c)P(c), which means that g is a sta-
tionary distribution. Hence, it indeed suffices to prove the detailed balance equa-
tion (8.8) to conclude that g(c) is a stationary distribution, which is to be proved.
The detailed balance equation trivially holds for i = j. Next, consider the case
i # j. Since we have G;; = Gj;, the detailed balance equation reduces then to
gi(c)A;j(c) = qj(c)Aji(c). Using the definition of ¢(c) and A(c), we derive

ai(@Aij(e) = iy exp (/) exp (= mUO0)
= Nl( | eXp (— f (-f)) exp (_ F(0)—£(j)+max(f( j)ff(i),O))
(19 4 c

= o (_ f(Cj)) exp (_ maX(f(i)Cff(j)vO))

= qj(c)A;i(c).
0

Example 8.3. Suppose that we apply simulated annealing to the neighborhood
graph of Figure 8.2(a). As discussed in Section 7.1, simulated annealing can be
viewed as a randomized version of threshold accepting, where the control parame-
ter gives the expected value of the threshold. Theorem 8.5 yields that if the control
parameter is 3, then the simulated annealing algorithm converges to the stationary
distribution ¢(3) =~ (0.38, 0.28, 0.20, 0.14). Hence, although the expected value of
the threshold is as large as the maximum cost difference between any two solutions,
the probability of ending up in the optimal solution is already 0.38. Furthermore,
we get (1) ~ (0.64,0.24,0.09,0.03) and g(0.1) ~ (1,5-1073,2-107°,9-10714),
Hence, for ¢ = 0.1, the probability of asymptotically ending up in a suboptimal
solution is only 5- 1073, ]

In the example we see that the smaller the fixed value of the control parameter,
the smaller the probability that simulated annealing asymptotically ends up in a
suboptimal solution. The following lemma states that this claim is generally true.

Lemma 8.2. Let (S, f) be an instance of a combinatorial optimization problem.
Furthermore, let q(c) be given by (8.7), and let § be the constant defined by
min{f(j) | j € S\S*} — f*, where f* denotes the cost of an optimal solution. Then
we have for any non-optimal solution i € S

)
gi(c) < exp (— C) : (8.9)
Proof. By (8.7), we know that for any solution i, either optimal or not, g;(c) is

given by
gi(c) = P (_fgl)) _exp (f —Cf(l))

= 5 s (_f(cj))  Yjesexp (.f*,cf(j)) :
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As S contains at least one optimal solution, the sum in the denominator of the right-
most expression is at least one. Hence, we have ¢;(c) < exp (f _Cf @ ) , from which
the lemma follows.

From Lemma 8.2 it follows that simulated annealing converges to the set of optimal
solutions in the homogeneous model if the stationary distribution of the homoge-
neous Markov chain associated with a run of the algorithm at a fixed value ¢ of the
control parameter is given by (8.7).

Corollary 8.1. Let (S, f) be an instance of a combinatorial optimization problem
with S* # S and S finite. Furthermore, let N be a neighborhood function defined on
S that induces a strongly connected neighborhood graph.

If the generation matrix satisfies G;; = Gj; for all i, j € S, then the finite homo-
geneous Markov chain associated with a run of simulated annealing at a fixed value
¢ of the control parameter is strongly ergodic and the components of the unique
stationary distribution q(c) to which its probability distribution converges are given
by (8.7). Furthermore, q(c) satisfies

I@E)lqi(c) =0 forallie S\S".
O

From Lemma 8.2 one may suspect that an effective implementation of simulated an-
nealing is obtained by assuming a very small, fixed value for the control parameter.
This is, however, not the case. The reason is that (8.9) holds after an infinite num-
ber of iterations, while in practice the permissible number of iterations is relatively
small. To substantiate this, observe that if the number of iterations exceeds the size
of the solution space, then simulated annealing is less effective than total enumera-
tion. Besides, if the control parameter has a low value and if we have only limited
time, then the drawback that a large number of iterations is required to escape from
a local optimum becomes eminent. To illustrate this, consider Example 8.2 and
suppose that simulated annealing arrives in solution 2 in the neighborhood graph
given in Figure 8.2(a). The random variable denoting the number of iterations re-
quired to leave this local optimum has the geometric distribution with parameter
Py3(c) + Pou(c), where a geometric random variable ¥ with parameter p has a prob-
ability distribution defined by IP{Y =k} = p(1 — p)*~! and an expected value of .
Because Pr3(c) = % exp (— i) and Py (c) = % exp (— i), this means that for c = 0.1
the expected number of iterations required to escape from solution 2 is as large as
50,000. For ¢ = 3 and ¢ = 1, this expected number is only 1.6 and 4.0, respectively.
This supports our claim that in an effective cooling schedule we want to start with a
relatively large value for the control parameter.

In the remainder of this section we generalize the result of Corollary 8.1. Specif-
ically, we weaken the condition that the generation matrix has to satisfy G;; = Gj;
for all i, j € S to the condition that the neighborhood graph has to be symmetric.

Consider the stationary distribution g(c) given by (8.7). Simple calculation
shows that for any two solutions i, j € S, the relation between the probabilities g;(c)
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and g;(c) is given by
atc)=ew (") g0

Cc

Below, we prove for strongly connected, symmetric neighborhood graphs that a
constant K exists, such that if we have f(i) > f(/), then the more general relation

gi(c) < Kexp (f(j ) ;f(i)> q;(c)

holds. Based on this relation, we are next able to prove the claimed generalization
of Corollary 8.1.

Lemma 8.3. Let (S, f) be an instance of a combinatorial optimization problem with
S* # S and S finite. Furthermore, let N be a neighborhood function defined on S that
induces a strongly connected, symmetric neighborhood graph.

The finite homogeneous Markov chain associated with a run of simulated an-
nealing at a fixed value c of the control parameter is strongly ergodic. Furthermore,
a constant K exists, such that for each control parameter value ¢ and for each pair
of solutions i, j € Swith f(i) > f(j) we have

gi(c) < Kexp (f (j);f (i)) q;(c), (8.10)

where q(c) is the unique stationary distribution to which the probability distribution
of the Markov chain converges.

Proof. By Definition 8.5 the generation matrix is independent of the value ¢ of the
control parameter. To prove the theorem, we prove the slightly more general result
that it holds for generation matrices that may have some limited dependency on c.
More precisely, we prove that the theorem holds if simulated annealing is based on
a family {G(c) | ¢ € R" } of generation matrices with the following two properties.

e Each generation matrix G(c) satisfies Definition 8.5, which means that for
each c and i, j € S we have Gj;(c) > 0 if and only if j € N(i).

e The ‘e-condition’ is satisfied. This condition states that an € > 0 exists such
that for each ¢ and i, j € S we have either Gj;(c) =0 or Gj;(c) > &.

We prove the generalized theorem by induction on the size of the solution space plus
the number of distinct cost function values, i.e., on m(S, ) = |S| + [{f(s) | s € S}|.
For any m(S, f), the existence of g(c) follows from Theorem 8.4. Hence, what
remains to be shown is that a constant K exists, such that for any c and i, j € S with
f(@) > f(j), the stationary distribution g(c) satisfies (8.10).

Basis case. For m(S, f) = 2, we only have one single solution, which implies that
the theorem trivially holds.

Induction step. Next, suppose that m(S, f) > 3. To prove that a constant K exists
such that g(c) satisfies (8.10) for each value ¢ > 0, we distinguish the case that S
contains two neighboring optimal solutions s1,s2 € S* from the case that S does not
contain such a pair of solutions.
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Case 1: 51,57 € S* with sy € N(s1) exist. We replace s; and s, by one single solution
s'. In terms of the neighborhood graph of S, f, and N, the replacement of s; and s,
corresponds to contracting the edge {s1,s2}. The cost of the new node is given
by f(s1) = f(s2). The obtained solution space, cost function, and neighborhood
function are denoted by §’, f', and N, respectively.

We now derive a family {G'(c) | ¢ € R"} of generation matrices for §', f', N’
from the assumed family {G(c) | ¢ € R* } of generation matrices for S, f, N with the
property that the unique stationary distributions ¢'(c) and g(c) of the corresponding
Markov chains are related by

oy aile) ifis,
4i(c) —{ 45, (€) +an(c) ifi=. @11
Hence, asymptotically simulated annealing behaves the same on S,f,N as on
S',f',N' except that in the latter case no distinction is made between nodes s;
and sp. It can be verified that ¢'(c) satisfies (8.11) if we define G'(c) as follows.
If simulated annealing is at a solution i # s’, we generate a neighboring solution
J € N'(i) with probability G;j(c) if j # s' and with probability Gj, (c) + Gis, (c)
otherwise. If, on the other hand, we are at solution s’, we consider this solu-
tion as solution s; with probability g5, (¢)/(gs, (c) + g5, (c)) and as solution s, with
probability gy, (c)/(gs, (c) +gs,(c)). Note that these probabilities are defined, i.e.,
gs, (¢)+4gs,(c) > 0 holds, because the strong connectivity of the neighborhood graph
of S, f,N implies that ¢; > 0 for all i € S. We then generate neighboring solutions
by using G(c) accordingly. Formally, we define G’(c) such that for any i, j € S’

¢ Gij(e) it £,
Gis, (¢) + Gis, (c) ifigs'nj=5,

gsy () gs, (¢) e .
G;j(c) _ 4 (C)‘_th © Gy, j(c) + 4, (C)%kqsz © Gy,j(c) ifi= SANjE£S,

51 (€)
qs, (Z)l-kqsz (¢) (Gsysy (€) + Gy, ()

qsy () . .
\ 4 (C)z-l-q.vz (c) (Gyys,(€) + Gy (€)) ifi=j=s.

Obviously, the modified neighborhood graph corresponding to ', /', N’ is still
strongly connected and symmetric. Furthermore, we have m(S', f') = m(S, f) — 1:
the size of the solution space has been reduced by one, and the number of distinct
cost function values has not been changed. To apply the induction hypothesis, i.e., to
assume that the generalized theorem holds for S, f', N', we still have to show for the
family {G'(c) | ¢ € R" } of generation matrices defined above that each generation
matrix G’ (c¢) complies with Definition 8.5 and that the e-condition is satisfied. Both
requirements are by assumption satisfied by the family {G(c) | ¢ € R*}. Using
this, it easily follows that the former requirement is also true for {G'(c) | c € R* }.
Furthermore, it implies that for proving the latter requirement it suffices to derive a
positive lower bound on both gy, (¢)/(gs, (¢) + gs,(c)) and gy, (c)/(gs, (¢c) + g5, (c))
that does not depend on c¢. We now concentrate on this task.
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As f(s1) = f(s2) holds, which implies Ay, (¢) = 1, we have
ds, (c) = Z‘Ii(c)Pin (c) > gs, (C)P5251 (c)= qs, (C)G5251 (c).
ies
Since the e-condition holds for matrix G(c) and since s € N(s;), this yields that
gs,(c) > gqs,(c)e. Hence, we obtain

qs, (c) > ds, (c) _ &
951 (€) +d5(€) T g5y () + ga (c)  1+€
Equivalently, it can be shown that gy, (c)/(gs,(c) + ¢s,(c)) is also bounded from
below by , ¢ . This proves that the family {G'(c) | ¢ € R" } satisfies the e-condition.
As aresult, we can now apply the induction hypothesisto S, f/, and N, i.e., we may
assume that a K’ exists, such that for each ¢ and 7',/ € §' with f'(i') > f'(j') we

e <f’(") f’("))
7=

dh(c) <K'exp
C

qy(c), (8.12)

where ¢'(c) is the unique stationary distribution given by (8.11). We note that if
G(c) is independent of ¢, then this does not imply that G'(c) is also independent of
c. This is the reason that we prove a generalized version of the theorem.

To complete the proof of the induction hypothesis for the case that S contains
the two neighboring optimal solutions s1,s2, we now show that (8.10) holds for all
candi,j € S with f(i) > f(j) if K is defined as 'T*K’.

First of all, consider the case that j ¢ {s;,s>2}. Note that i ¢ {s1,s2} holds be-
cause s; and s are both optimal. Equation (8.10) follows when the definition of
q'(c) given by (8.11) is substituted in the equation obtained from (8.12) by taking
j=jandi =i.

Next, suppose that j = s;. By taking j' = s’ and i/ = i in (8.12) and by applying
the definition of ¢'(c), we obtain

fs1) = f(D)

c

) @@+ a0
Using the derived lower bound . on g5, (c)/(gs, (c) +¢s,(c)), we now get

Qi(C) S K'exp <f(81) _f(l)) 1+8!]s1 (C)

c €
Hence, (8.10) holds for our choice of K. Similarly, this result can be derived for the
case that j = ;.

gi(c) < K'exp (

Case 2: 52 ¢ N(s1) for any s1,s2 € S*. To enable us to apply the induction hypothe-
sis, we reduced the solution space S in Case 1 by merging two neighboring optimal
solutions. In this case we reduce the other component in the definition of m(S, f),
namely the number of distinct cost function values. More specifically, we define a
new cost function f” in which the cost of all optimal solutions is increased to the
second-best cost. The increase is denoted by d, which we have already defined in
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Lemma 8.2. Hence, we have

d=min{f(i) |[ieS\S'}—f"
and f'(i) = f(i)+ 3 if i € $* and f'(i) = f(i) otherwise, where f* denotes the cost of
an optimal solution. We can now apply the induction hypothesis to S, f’, N, and the
assumed family {G(c) | ¢ € R" } of generation matrices. This means that we may
assume that a constant K’ exists, such that for all ¢ and i, j € S with f'(i) > f'(})

the stationary distribution ¢’ (c) of the associated finite homogeneous Markov chain
with transition matrix P’(c) satisfies

d(c) < K'exp (f s '("’) 4(c). 8.13)

J

To use this equation to prove that the induction hypothesis also holds for S, f, and
N, we express ¢'(c) in terms of the stationary distribution g(c) resulting from S, f,
and N. To do this, we show that the vector §(c) with

(e ifids*
(C):{q() ¢

exp (—?) qi(c) ifies*

A

qi

is a left eigenvector of P'(c) with eigenvalue 1. As vector §(c) is not stochastic, it
does not define the stationary distribution ¢’'(c). However, ¢'(c) is obtained from
4(c) by normalizing it, i.e.,
/ 4(c)
7() Siesdi(c)
To prove that g(c) is a left eigenvector of P(c), we derive two auxiliary results.
Leti, j € S be arbitrary. If we do not have i = j € S, then

Pjj(c)gi(c) = Pij(c)qi(c) (8.15)
holds. This is obviously true if i ¢ S* as in that case we have §;(c¢) = gi(c) and
P};(c) = Pij(c). Next, suppose that i € S*. If in addition j € S*, then (8.15) follows
from P;;(c) = P;j(c) = 0, which is implied by the assumption that for any two dif-
ferent optimal solutions s; and s, we have s ¢ N(s1). If, on the other hand, j ¢ S*
holds, then we have §;(c) = exp (—?) gi(c) and, as Aj;(c) = exp (?) Ajj(c), also

P/;(c) = exp (E) P;j(c). This again yields (8.15).
Next, suppose that i = j € §*. By definition, we then have

Pij(e)aj(c) = (1— > P}z(c)> 4(c)-

1E€S,1#)
By (8.15), the right-hand side can be rewritten to

gjlc)— Y, Pulc)gjlc)

I€SI4]

(8.14)
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and, as ;g Pj; = 1, this gives
Pii(0)gj(c) = gj(c) = (1—="Pj(c))q;(c)
Pjj(c)gj(c) —qj(c) +q;(c).- (8.16)

Using (8.15), (8.16), and the observation that g(c) is a left eigenvector of P(c),
we can now derive

Y PL(0)di(c) = Y Pi(e)gi(c) — g;(c) +aj(c) = d;(c).

ieS i€S

Hence, §(c) is indeed a left eigenvector of P'(c), which implies that ¢'(c) given
by (8.14) is a stationary distribution of the Markov chain associated with P’(c).

Let z(¢) = Y;c5gi(c) be the normalization factor in (8.14). Then, if we substitute
the definitions of ¢’(c) and f’ in (8.13), we obtain that for any ¢ and i, j € S with

F(@) > f(j) we have

WO _ 1o (T =D 40
z(c) c z(c)
if j ¢ 5" and
S
: N5 fli eXp(—c)q'(C)
1O < ey (19 73-10) j
z(c) c z(c)
if j € §*. This implies that (8.10) holds for K = K’ and for all ¢ and i, j € S with
f (@) > f(j), which completes the proof of the induction hypothesis. |

Using Lemma 8.3 we are able to generalize Lemma 8.2 and, consequently, Corol-
lary 8.1.

Lemma 8.4. Let (S, f) be an instance of a combinatorial optimization problem.
Furthermore, let stochastic vector q(c) satisfy (8.10) for a constant K and each
pair of solutions i,j € S with f(i) > f(j), and let & be the constant defined by
min{f(i) | i € S\ S*} — f*, where f* denotes the cost of an optimal solution. Then
we have for any non-optimal solution i € S

o< xen(-3)

Proof. Because gj(c) <1 forall j € S, (8.10) implies that g; < Kexp (f(j):f(i))

for any j with f(i) > f(j). By letting j be an optimal solution, the lemma follows.
O

Corollary 8.2. Let (S, f) be an instance of a combinatorial optimization problem
with S* # S and S finite. Furthermore, let N be a neighborhood function defined on
S that induces a strongly connected, symmetric neighborhood graph.

Then the finite homogeneous Markov chain associated with a run of simulated
annealing at a fixed value c of the control parameter is strongly ergodic and the
unique stationary distribution q(c) to which its probability distribution converges
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satisfies
limg;(c) =0
C}w Ch( )

for any non-optimal solution i € S. |

8.4 Equilibrium Statistics

We now derive some statistical results for simulated annealing in the model dis-
cussed in the previous section, i.e., in the case that we lower the control parameter
only if equilibrium is attained. We will assume that all conditions of Theorem 8.5
are satisfied, where we draw special attention to the condition that the generation
matrix has to satisfy G;; = Gj; for all i, j € S.

By Theorem 8.5, we know that, at any value ¢ of the control parameter, the
probability of being in solution i € § at equilibrium is given by (8.7), i.e., by

qi(c) = y l(c) exp (— 1) ) , where No(c) = X jesexp (— ) ) Hence, at equilibrium

0 c c

the expected cost (f). and the variance 62 of the cost are given by

(e = f(i)gi(c) (8.17)
ieS
and
o2 =Y (f(i) = (f)e) ailc), (8.18)
ieS

respectively. Note that because S # S* by one of the conditions of Theorem 8.5 and
because g;(c) > 0 for all ¢ > 0, we have 62 > 0. Using this observation and the
following theorem yields that if the control parameter decreases, then the expected
cost at equilibrium also decreases.

Theorem 8.6. Let (f). and o2 be defined by (8.17) and (8.18), respectively. Then,

we have
0 o2
dc (e = 2’
Proof. Using the definition of (f). gives
0 .0
ac e = 2S05,0i(0) (8.19)

Furthermore, simple calculus yields
0 _v f0) —f()
aCN() (c) = 2 e .
JjES
and thus, by using 2. (g(c) - h(c)) = g(c) & h(c) +h(c) 2 g(c) with g(c) = 1/No(c)
(

c
and h(c) = exp (_j; ) ) , we obtain
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dc No(c)
e (") ew ()5
2 No(e) Ng(e)  dc ’
(e (¢) Zjes S (j)exp _C(j)
0yt B oo (1)
T (1)~ o)
= L340 (PO -0

€S

I
o p—
|
)
o N
=+
“
™~
s
S
~_
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By definition, we have (f). = Y;c5 f(i)gi(c). Furthermore, because Y,;csgi(c) =1
we also have (f). = Y;cs(f)cqi(c). Using these observations we obtain

0

ac<f>c =

; (-2(f>3+<f>3+2f2(i)‘1i(c)>
ieS

LI PO =270+ (H2aile)

i€S

L S0 - (002ale)
€S

o2

cé ’

|

By using the following theorem, we can strengthen the observation that the expected
cost at equilibrium decreases if the control parameter decreases. It implies that the
expected cost at equilibrium decreases from a value that is at most the average cost

to the optimal cost.

Theorem 8.7. Let (f). and 62 be defined by (8.17) and (8.18), respectively. Fur-
thermore, let (f)e = ‘_19‘ Yics f(i) denote the average cost and let f* denote the
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optimal cost. Then, we have

lim <f>C = <f>°°7

C—r
li ¢ = f
lim(f) f
1
. 2 _ N 2
limol = g DU~ {)), and
limcg = 0.
cl0

Proof. The theorem can be proved by using the definitions of (f)., 62, and g(c). O

In the above two theorems we studied the solution space as a whole. For an in-
dividual solution i € S, we can derive the following result. For decreasing c, the
probability of being in solution i at equilibrium increases if i is optimal and it de-
creases if 7 has a cost that is at least the average cost. Otherwise, a threshold c; exists,
such that the probability of being in solution i increases if ¢ > ¢; and decreases if
c < ¢j.

Theorem 8.8. Let (f)e = | é‘ Y.ics f(i) denote the average cost, and let f* denote

the optimal cost. Furthermore, let the components of distribution q(c) of S be given
by (8.7). If S # S*, then we have for anyi € S

0
aCq,-(c) <0
ifri)=re
0
aCq,~(c) >0
if f(i) > (f)er and
9 <0 ifc>c
aCq,'(c) =0 ifc=g¢

>0 ifc<c
Joraci>0if f* < f(i) <(f)e-

Proof. In Theorem 8.6 we proved

2 a0 =9 (10~ o).

As qic(zc )'> 0, this implies that the sign of aac qi(c) is determined by the sign of

f() = (f)e. As we concluded from Theorems 8.6 and 8.7, (f). increases from
S to (f)e when ¢ increases. The theorem now follows easily. ad

8.5 *Inhomogeneous Markov Chains

In Section 8.3 we proved that simulated annealing converges to the set of optimal
solutions in the unrealistic setting that the control parameter is only changed after
equilibrium has been attained. The main result of this section is that convergence in
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weakly ergodic = loss of memory
+ strongly ergodic

convergence

Figure 8.5. Definition of strong ergodicity.

this unrealistic homogeneous model implies convergence of a real run of simulated
annealing if we apply a cooling schedule in which the control parameter is lowered
slowly enough.

Before making the result more precise, we summarize the results we derived
for the homogeneous model. We first showed in Section 8.2 that if the neighbor-
hood graph is strongly connected, then the homogeneous Markov chain associated
with a run of simulated annealing at some fixed value ¢ of the control parameter
is strongly ergodic, which means that the probability distribution of the Markov
chain converges to a unique stationary distribution g(c), regardless of how a start-
ing solution is obtained. Next, we derived in Section 8.3 that, under the additional
assumption that the neighborhood graph is symmetric, we have lim. g gi(c) = 0 for
any suboptimal solution i € S, i.e., the probability of being in a suboptimal solution
at equilibrium becomes zero as ¢ approaches zero.

In this section we show that if the neighborhood graph is strongly connected,
then the single inhomogeneous Markov chain associated with a real run of simulated
annealing is also strongly ergodic and the stochastic vector to which its probability
distribution converges is given by ¢ = lim.jo¢(c), where g(c) is as defined above.
This result confirms our claim that convergence in the homogeneous model implies
convergence in a realistic setting. Note, however, that the result holds under the
assumption that the neighborhood graph is strongly connected. Hence, suppose that
we can prove for the homogeneous model that simulated annealing still converges
to the set of optimal solutions after we have replaced the condition on the neigh-
borhood graph that stipulates that it must be symmetric with a different condition.
In that case the result implies that a real run of simulated annealing also converges
to the set of optimal solutions. If, on the other hand, we are able to prove for the
homogeneous model that simulated annealing converges to the set of optimal solu-
tions for a type of neighborhood graph that is not strongly connected (but, among
other properties, is weakly optimally connected), then the result does not imply that
a real run of simulated annealing also converges to the set of optimal solutions.

To prove our result, we need some general Markov chain theory on how to prove
that an inhomogeneous Markov chain is strongly ergodic. For a Markov chain the
characteristic of being strongly ergodic implies two things: loss of memory and
convergence, where loss of memory means that the effect of the initial probability
distribution of its states is lost; see Figure 8.5. If a Markov chain shows a loss of
memory, but does not necessarily converge, then it is said to be weakly ergodic.
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Definition 8.13. A Markov chain is called weakly ergodic if for all + > 0 and each
triple i, j,! of states we have

Tim (P{X (1) = X (1) = j} ~PAX (') = | X(1) = 1}) = 0. (8.20)
O

The definition of weak ergodicity is slightly stronger than required to enforce loss of
memory. Loss of memory is already guaranteed if (8.20) holds for r = 0. However,
we do not want the loss of memory to be realized only by the first few transitions of
the Markov chain, which would imply that the outcomes of these early transitions
have an essential effect on the behavior of the Markov chain in the long run. Instead,
we prefer that for any ¢ > 0 the effect of the outcomes of the first # transitions
vanishes as time proceeds, i.e., we want the memory to be lost independently of
when the process started. This clarifies our definition of weak ergodicity. For similar
reasons, we defined strong ergodicity in Definition 8.10, such that (8.5) has to hold
for any ¢ > 0 instead of for only r = 0.

For finite homogeneous Markov chains there is no distinction between weak and
strong ergodicity, as is stated by the following theorem.

Theorem 8.9. If a finite homogeneous Markov chain is weakly ergodic, then it is
also strongly ergodic.

Proof. Consider an arbitrary finite homogeneous Markov chain, and assume that
it is weakly ergodic. The weak ergodicity implies that the probability distribution
a(t") of X(¢') fort' — oo does not depend on the probability distribution a(r) of any
X (¢) with 7 > 0 fixed. Furthermore, the Markov chain has at least one stationary
distribution g by Theorem 8.1, which means that if X () has probability distribu-
tion g, then all random variables X (') with #' > ¢ have probability distribution q.
By combining these two observations we obtain that a(¢') approaches g as 1’ — o,
regardless of a(¢). This proves the theorem. |

For inhomogeneous Markov chains, weak ergodicity need not imply strong ergod-
icity, as follows from the following example.

Example 8.4. Consider the inhomogeneous Markov chain with state space {1,2}

and transition matrix
11 1
t t
P(t) = ( 1 11 >
t t

1 11
P(f):<111 1t>
t t

if ¢ is even. The corresponding transition graphs are depicted in Figure 8.6. If ¢
is odd, then, regardless of the current state of the Markov chain, the probability
of going to state 1 is given by 1 — } and the probability of going to state 2 by }
Similarly, if 7 is even, then the probability of going to state 1 is given by i and

the probability of going to state 2 by 1 — ; Hence, we have a(r) = (1 — }, ;) for

if t is odd and
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_1 1 1 _1
t 1 t t 121 t
E 1 E E t }

1 1 2 1 1 2

t odd teven

Figure 8.6. State transition graphs corresponding to the two transition matrices of
the inhomogeneous Markov chain of Example 8.4.

t odd and a(r) = (},1— 1) for t even. As this result holds independently of a(t')
with #' < ¢, this shows that the Markov chain is weakly ergodic. However, it is not
strongly ergodic as it does not converge: for # — oo the probability distribution a(r)
alternates between (1,0) and (0,1). |

From the example above it follows that, although it is a necessary condition, weak
ergodicity alone does not guarantee strong ergodicity for an inhomogeneous Markov
chain. A possible condition that, in combination with weak ergodicity, guarantees
strong ergodicity is given by the following theorem. The condition is expressed
in terms of the left eigenvectors with eigenvalue 1 of the transition matrices of
the Markov chain, i.e., in terms of the stationary distributions of the homogeneous
Markov chains associated with the successive, possibly different, transition matrices
of the inhomogeneous Markov chain. By Theorem 8.1 at least one eigenvector with
eigenvalue 1 exists for each transition matrix P(¢). The additional condition implies
that the stationary distributions of the homogeneous Markov chains associated with
the successive transition matrices of the inhomogeneous Markov chain converge to
a distribution, where an arbitrary stationary distribution of a homogeneous Markov
chain may be selected if there are multiple alternatives. In the theorem we use the
notation ||v|| to denote the norm of vector v, i.e., ||v|| = X;|vi|-

Theorem 8.10. A finite inhomogeneous Markov chain is strongly ergodic under the
following two conditions.
e The Markov chain is weakly ergodic and

e a sequence {q(t)}> | of eigenvectors with eigenvalue 1 exists, one for each
transition matrix P(t), such that

leq qt+1)]] <ee.

Moreover; the stochastic vector to which the probability distribution a(t) converges
fort — oo is given by g = limy_. q(1).
Proof. See the proof of Theorem V.4.3 in Isaacson & Madsen [1976]. O

Using this theorem, we will be able to prove our main result, i.e., that for a strongly
connected neighborhood graph a cooling schedule exists such that simulated anneal-
ing implies a strongly ergodic inhomogeneous Markov chain for which the proba-
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bility distribution converges to g = lim. | g(c), where g(c) is the unique stationary
distribution of the inhomogeneous Markov chain associated with a run of simulated
annealing at a fixed value c of the control parameter.

In order to apply the theorem we still have to find an approach to show that an
inhomogeneous Markov chain is weakly ergodic, since it is generally difficult to use
its definition directly, as we did in Example 8.4. We first focus on this problem.

By definition, a Markov chain is weakly ergodic if for any pair a(¢),d'(t) of
probability distributions we have

lim (a(r)f:[P(i) —a’(t)le(i)) =

t'—o0
In other words, a(r) Hﬁ;,P(i) must become independent of a(r) as ¢’ — . It can
be verified that a(r) i’:t P(i) is independent of a(t) for some fixed 7’ if and only if
irth(i) is a constant matrix, where a matrix is said to be constant if all its rows
are identical. This suggests that the weak ergodicity of an inhomogeneous Markov
chain depends on whether Hirzt P(i) approaches the constant matrix for ' — o, To
formalize the idea of approaching a constant matrix, we use the ergodic coefficient.

Definition 8.14. Let P be a n x n stochastic matrix. Then the ergodic coefficient
o(P) is defined as
n
o(P) = mi in(Py, P;
(P) 1;%1?91; min(Py, Pj;)

or, equivalently, as
oaP)=1—_ m P, |-
( ) 2 1<l<a]X<n2| i jl|
O

For a proof that the two definitions that are given for the ergodic coefficient c(P)
of a stochastic matrix P are indeed equivalent, we refer to Exercise 3 at the end of
this chapter. It can be verified that the ergodic coefficient oi(P) is a value between
zero and the maximum sum of the entries in a row, which is one. Furthermore,
the coefficient equals one if and only if P is a constant matrix and it equals zero if
and only if P contains two rows with the property that a positive entry in one row
implies a zero entry in the other row. In terms of an inhomogeneous Markov chain,
this means that if the ergodic coefficient of Hflz, P(i) equals one, then the probability
of being in state [ at time ¢’ is independent of the state at time 7. If, on the other hand,
the ergodic coefficient equals zero, then two states i and j exist, such that the set of
possible states at time #/ when being in state i at time # is disjunct from the possible
states at time ¢’ when being in state j at time 7.

We can now formalize the property of approaching a constant matrix as the
property that the ergodic coefficient approaches one. Using this formalization, the
assumption given above that an inhomogeneous Markov chain is weakly ergodic if
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and only if ]_[f»’:, P(i) approaches the constant matrix for ¢’ — oo can be proved to be
correct.

Theorem 8.11. A finite inhomogeneous Markov chain is weakly ergodic if and only
if for allt > 1 we have

lim o (ﬁ}%‘)) =1.

t'—oo
Proof. See Theorem V.3.1 in Isaacson & Madsen [1976]. O

Based on this result, we can prove an alternative characterization of weak ergodicity.
This is the characterization that we will use.

Theorem 8.12. A finite inhomogeneous Markov chain is weakly ergodic if and only
if an increasing sequence {n;}7 , with ng = 0 exists, such that

io«( M P(r)) .

i=0  \s=n;i+1
Proof. See Theorem V.3.2 in Isaacson & Madsen [1976]. O

This concludes our discussion on general Markov chain theory. We now apply this
theory to show that if the neighborhood graph is strongly connected and the con-
trol parameter is lowered slowly enough, then the inhomogeneous Markov chain
associated with a run of simulated annealing is strongly ergodic and converges in
distribution to g = lim. o ¢(c). Following the sufficient conditions of Theorem 8.10,
we first prove Lemma 8.7, which states that the inhomogeneous Markov chain is
weakly ergodic. In this proof we write G = min;cg jen(;) Gij to denote the smallest
generation probability and A(c) = min;eg, jen(;) Aij(c) to denote the smallest proba-
bility of a neighboring solution being accepted. Note that for a strongly connected
neighborhood graph with $* # S we have 0 < A(c) < 1.

Obviously, the probability A;;(c) of any cost-deteriorating neighbor being ac-
cepted converges to zero as ¢ | 0. Lemma 8.6 states that the inhomogeneous Markov
chain associated with simulated annealing is weakly ergodic if this convergence is
not too fast. To prove Lemma 8.6, the following lemma is useful.

Lemma 8.5. Consider the inhomogeneous Markov chain associated with a run of
simulated annealing for a sequence {ci}y._, of control parameter values. If a so-
lution i has at least one neighbor with cost strictly larger than the cost of i and if
cx <In~12, then we have P;(cy) > G -A(cy).
Proof. Let j be a neighbor of i with strictly higher cost. By definition we have

Pi(ck) =1— Y GuAi(cx) =1—-GijAij(ce) — Y, GyAu(ck).

1€S,14i 18,14,

Since Ay < 1foralll € Sand },;¢Gy = 1, we now get

Pi(er) 2 1= GijAij(cr) = (1= Gij) 2 (1= Aij(cr)) Gij.
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Because f(i) < f(j) holds, we have by definition A;;(cx) = exp ('f(i);f(j) ) If we
use this and ¢; < In~!2, calculus yields 1 —Ajj(ck) > Aij(ck). Hence,

Pi(ck) 2 GijAij(c) 2 G- Aler)
holds, which proves the lemma. O

Lemma 8.6. Let (S, f) be an instance of a combinatorial optimization problem with
S* # S and S finite. Furthermore, let N be a neighborhood function defined on S that
induces a strongly connected neighborhood graph with diameter d.

If we assume a cooling schedule in which the sequence {cy}y_, of control
parameter values is non-increasing, starts with value ¢, < In"'2, and satisfies
Z‘I-’;lAd(ci.d) = oo, then the inhomogeneous Markov chain associated with a run
of simulated annealing is weakly ergodic.

Proof To prove the lemma, we show that the ergodic coefficient of
4 (i-1)d+1 P(cy) is at least GYA%(c;4) for any i > 1. In this case the assumption

Y Al (Cz~d) = oo yields

oo id oo
ZO( ( H P(Ck)) Z Gd 2 Ad(Ci_d) = oo,
=1 \k=(i—1)d+1 i=1
which by Theorem 8.12 implies that an inhomogeneous Markov chain associated
with simulated annealing is indeed weakly ergodic. ‘

Let PY) be a shorthand notation for the transition matrix H}(’d (i—1)d+1 P(cg). Our

proof obligation can now be formalized as au(P(!)) > GYA%(c;y) for all i > 1. By
definition, we have
o P(i)) = min Y min( P() P(.,i) > m'nP(-l:)*,
( jﬂES% o -/l)_ jElS JS

where s* is an optimal solution. Hence, it now suffices to derive ](‘)* > GYAY (ciq)
foranyi>1and j€S.

As the neighborhood graph has diameter d < oo, it contains a path p that suc-
cessively visits the solutions s1,s2,...,s, with s = j, s, = s*, and n < d. By the
definition of P(’), we have

0 (i—=1)d+n—1 id
P> ( 11 P(Ck)> + ( (]‘[ P(ck)> . (8.21)
* k d+n s

k=(i—1)d+1 is =(i—1) o 5"

The first product is at least Hk'_ 1l d1+ 2 +11 G- A(cy), as follows from the definitions of

G and A and the existence of path p. Next, consider the second product. As §* # S
and the neighborhood graph is strongly connected, solution s* contains at least one
neighbor with higher cost. Furthermore, ¢, < In~!2 as, by assumption, ¢; < In~!2
and {c}7>_ is non-increasing. By Lemma 8.5 this implies that Py« (cx) > G- A(cy)
for any k. Hence, the second product in (8.21) is at least H};i(i_l)dJrnG -A(cy).
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Combining these results gives
, i-d
P> G-Alcy).
k=(i—1)d+1
As ¢y, and consequently A(cy), is non-increasing in &, by assumption, the right-hand
side expression is at least GYA4(c;.4), which was what we wanted to prove. |

Lemma 8.7. Let (S, f) be an instance of a combinatorial optimization problem with
S* # S and S finite. Furthermore, let N be a neighborhood function defined on S that
induces a strongly connected neighborhood graph with diameter d.

If we assume a cooling schedule for which a ko exists, such that the sequence
{ck}r, of control parameter values is non-increasing and satisfies

dA <
1
logk = ¥ = In2
for all k > ko with A = maxics jen(i) (f(J) — (i), then the inhomogeneous Markov
chain associated with a run of simulated annealing is weakly ergodic.

(8.22)

Proof. If the inhomogeneous Markov chain is weakly ergodic in the case that we
switch to a cooling schedule in which the sequence of control parameter values starts
at ko instead of ¢y, then it is also weakly ergodic for the original sequence {ct};_;,
as follows from the definition of weak ergodicity. Hence, by Lemma 8.6 it suffices
to show that ¥72, A?(ci.q) = = holds. By definition, we have A(c) = exp(—2).
Hence, by using (8.22) we can derive

i - A
Allciq) > exp (—d ) >

i:zko i:zko dA/log(id)

= ) exp(—log(id))
i=ko
_ Ly
40
which is oo, O

Theorem 8.13. Let (S, f) be an instance of a combinatorial optimization problem
with S* # S and S finite. Furthermore, let N be a neighborhood function defined on
S that induces a strongly connected neighborhood graph with diameter d.

If a cooling schedule is assumed for which a ko exists, such that the sequence
{ck}r, of control parameter values is non-increasing and satisfies

dA << 1
¢
logk = = In2
for all k > ko with A = max;cs jen(iy (f(J) — (i), then the inhomogeneous Markov

chain associated with a run of simulated annealing is strongly ergodic and its prob-
ability distribution converges to q = limy_,..q(cy), where q(ci) is the unique sta-
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tionary distribution of the homogeneous Markov chain associated with a run of
simulated annealing at a fixed value cy of the control parameter.

Proof. By Theorem 8.4 we have that for any ¢ > 0 the homogeneous Markov chain
associated with simulated annealing has a unique stationary distribution g(c) when
run at a fixed value ¢ of the control parameter. By definition, this means that for
each k transition matrix P(cy) has g(cx) as its unique left eigenvector with eigen-
value 1. If we now invoke Theorem 8.10 and Lemma 8.7 this means that to prove
the theorem it suffices to show that

> llg(er) = glexrn)|| < oo
k=1
Because S is finite, this is true if for each i € S we have
3 |gi(ex) = gi(crsn)| < . (8.23)
k=1

To prove this, we first show that ¢;(c) is a continuously differentiable function on
the open interval (0,e0).

The stochastic vector g(c) is the only feasible solution in the polytope defined
by

qlc)(P(c)=I) = 0 (8.24)
Y gilc) = 1 (8.25)
ieS

g(c) > 0, (8.26)

where I denotes the |S| x || identity matrix. The linear constraints given by (8.24)
can be rewritten to g(c) = ¢g(c)P(c) and thus ensure that g(c) is a left eigenvec-
tor of P(c) with eigenvalue 1. The constraints given by (8.25) and (8.26) ensure
that g(c) is stochastic. From the linear constraints, we can safely remove any of
the |S| constraints of (8.24), i.e., we can remove ¥;csqi(c)(P(c) —I);; = 0 for any
single j € S. This can be seen as follows. Suppose that for all / € S with [ # j,
we have ¥e5qi(c)(P(c) — 1)y = 0 or, equivalently, ¥;c5gi(c)P(c)i = qi(c). Then
summing over all [ € S with [ # j yields ¥, jc5,2jqi(c)P(c)y = 1 —q;(c). Fur-
thermore, as P(c) and g(c) are stochastic, we have Y;cgPi(c) =1 and Y,c5qi = 1
and thus ¥, ;c5qi(c)Py(c) = 1. Combination of these two observations gives
Yiesqi(c)P(c)ij = q;(c) and thus ¥;cgqi(c)(P(c) —I);j = 0. This proves our claim
that we can safely remove one of the |S| constraints of (8.24).

Let B(c) be the |S| x |S| constraint matrix resulting from the constraints given
in (8.24) and (8.25), where we remove the last constraint of (8.24). As indicated,
g(c) is the only feasible solution in the polytope defined by g(c)B(c) = b and
q(c) > 0with b=(0,0,...,0,1). From the theory of linear programming it now fol-
lows that g(c) is a basic feasible solution. Since the neighborhood graph is strongly
connected and since P;j(c) > 0 for all #,j € S with j € N(i), we furthermore have
that g;(c) > 0 for all i € S. This implies that each variable ¢;(c) is a basic variable
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in the basic feasible solution g(c). In other words, B(c) is an invertible matrix and
dCtB,'(C) h B d
detB(c) » Where i(c) denotes

the matrix B(c) with the ith row replaced by the vector b. Note that this is a general
expression that holds for any ¢ > 0.

Let Q;(c) = detB;(c) and Q(c) = detB(c). Then g;(c) can be written as Qife)
By definition, the determinant of a finite n X n matrix M is given by

detM =)’ sgn(m) ll[Mi,n(i)a
n i=1

q(c) = bB~!(c). Cramer’s rule now states that g;(c) =

where T ranges over all permutations of the columns of M and sgn(m) is
a function that assigns either the value —1 or 1 to permutation . From
this it follows that Q; and Q are polynomials of finite degree in the en-
tries of B(c) and b. By the deﬁnition of P(c), we have that the entries
of B(c) are linear functions in exp( ) exp( 1‘2) ,.-,EXPp (—“:%) for a fi-
nite L, where x; denotes a cost dlfference between two neighboring solu-
tions. Combination of these observations yields that Q; and Q are poly-

nomials of finite degree in exp(—"'),exp(—"?),...,exp(="*). As a re-
sult, the derivatives Qj(c) and Q'(c) of Qi(c) and Q(c) are polynomials
of finite degree in exp (— o ) »CXp (— g),...,exp (—XCL) and their derivatives
3 bexp (=), " .03 Jexp(—"2) seees exp (—™). Furthermore, the quotient rule for

derivatives gives
(o) — 00 20 ).
’ 0*(c)
The existence of g(c) implies that Q(c) # 0, which yields that the denominator is
positive for all ¢ € (0,e0). It now follows that the function ¢'(c) is continuous on the
interval (0,e0).

We use this result to prove (8.23). First of all, we show that a ¢ > 0 exists, such
that the sign of g}(c) is constant for all ¢ < ¢. This is obviously true if function g}(c)
is constant. Hence, assume that this is not the case. As observed, the denominator
in the definition of ¢}(c) is positive. Hence, the sign of ¢} is determined by the sign
of the numerator in (8.27). From the discussion above, it follows that an integer n
exists, such that the numerator can be written as

2 pilc™Hexp(—Aic™h), (8.28)

(8.27)

where p;(c™!) = )i ajjc™/ with ajm, # 0 is a polynomial in ¢~! and A; is a posi-
tive real number with 1 < i < n. For a sufficiently small ¢, (8.28) is dominated by
Ajm;c ™™ exp(—A;c~!), where i is chosen such that A; is minimal. In other words, for
a sufficiently small ¢, the sign of (8.28) is equal to the sign of @;n,. As {ci}r_, is
non-increasing and as ¢;(c) is bounded between 0 and 1, this implies that a ¢ > 0
exists, such that

Y lgi(cr) — qilersr)| < 1.

k=12,...
(954
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Hence, to prove (8.23), it now suffices to show that

Y. lgiler) — gilear)]

k=1.2,...
cx=é
is finite. Let cg,cx1 > ¢ As g; is continuously differentiable on (0,0), we have
that |gi(cx) — gi(crr1)] = | ;5! gi(c) dc|. Hence, we get

Ck+1
> lale) —atec)| < T [ o).
k=1.2,... k=12,... Y Ck

cg=¢ cg=e

Because {ck};._, is non-increasing, the right-hand side is at most

|
[ o
c

which is finite as the continuity of g/(c) on [é,c;] implies that |g(c)| is bounded.
This concludes the proof of the theorem. |

From this theorem and Corollary 8.2, the following result follows.

Corollary 8.3. Let (S, f) be an instance of a combinatorial optimization problem
with §* # S and S finite. Furthermore, let N be a neighborhood function defined on
S that induces a strongly connected, symmetric neighborhood graph with diameter
d.

If a cooling schedule is assumed in which the sequence {c}y._, of control pa-
rameter values is non-increasing and satisfies both limy_,.. c;y = 0 and

S dA
k= logk
with A = max;es jen() (f(7) — f(i)), then the inhomogeneous Markov chain associ-
ated with a run of simulated annealing is strongly ergodic and the stochastic vector
q to which its probability distribution converges satisfies q; = 0 for any non-optimal
solution i € S. |

8.6 Non-Convergence Result for Tabu Search

In this chapter we have proved Corollary 8.3, which states that if we have a finite,
symmetric, and strongly connected neighborhood graph, then simulated annealing
converges to the set of globally optimal solutions whenever the control parameter is
lowered slowly enough. In Chapter 7 we presented tabu search as an alternative to
simulated annealing for performing a long single walk in the neighborhood graph.
One may wonder whether the above-mentioned convergence result also holds for
this metaheuristic. As tabu search never stays in the same solution, it obviously
does not converge in the sense of simulated annealing, which, after an infinite num-
ber of iterations, ends up in an optimal solution. This observation does not, however,
answer the question as tabu search stores the best solution encountered. Figure 8.7
nevertheless shows that storing the best solution encountered does not help us. Sup-
pose that tabu search starts in solution 1 and that the tabu list can containm <n—4
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Figure 8.7. Neighborhood graph with n solutions for which tabu search need not
converge. The cost of solutioniisifor 1 <i<n—1andO0 fori=n.

solutions. The algorithm then cycles through the solutions 1,2,...,m and never
visits optimal solution 7.

8.7 Bibliographical Notes

In this chapter we make extensive use of Markov chain theory. For more details on
this theory we refer you to Feller [1950], Isaacson & Madsen [1976], and Seneta
[1981]. In Section 8.3 we first proved Corollary 8.1, which states for the homoge-
neous model that simulated annealing converges to the set of optimal solutions in
the case that the neighborhood graph is strongly connected and the generation ma-
trix satisfies G;; = Gj; for all i, j € S. This proof is based on Aarts & Korst [1989].
Next, we generalized this result in Corollary 8.2 by replacing the constraint on the
generation matrix by the constraint that the neighborhood graph has to be symmet-
ric. The proof has been provided by Faigle & Kern [1991], who have also presented
Example 8.2. In fact, Faigle & Kern [1991] prove a slightly more general result.
They show that instead of the neighborhood graph having to be symmetric, it suf-
fices to require that it is weakly reversible. By definition, this means that for any
two solutions i and j it holds that the minimum height of a path from i to j is equal
to the minimum height of a path from j to i, where the height of a path is defined
in Definition 1.13. Although the proof hardly changes, we did not prove this more
general result because if a neighborhood graph is not symmetric, then generally it
will also not be weakly reversible.

Suppose that for a given set of conditions we know that simulated annealing
converges to the set of optimal solutions and suppose that one of these conditions
is that the neighborhood graph has to be strongly connected. Van Laarhoven, Aarts
& Lenstra [1992] then prove that instead of being strongly connected, it suffices for
the neighborhood graph to be only weakly optimally connected. Although at first
this seems to be a relevant generalization, this is not the case, as can be seen as fol-
lows. From Example 8.2 it follows that the assumption that the neighborhood graph
is only strongly connected is not sufficient to guarantee convergence to the set of
optimal solutions. The weakest condition for which it has been proved that adding
it guarantees such convergence is the weak reversibility condition mentioned above.
Hence, the result of Van Laarhoven, Aarts & Lenstra [1992] implies that simulated
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annealing converges to the set of optimal solutions if the neighborhood graph is both
weakly optimally connected and symmetric, i.e., if the neighborhood graph consists
of several strongly connected components that all contain at least one globally op-
timal solution. However, in this case the application of simulated annealing simply
corresponds to applying it to one strongly connected, symmetric component of the
neighborhood graph. Hence, the convergence of simulated annealing to the set of
optimal solutions then follows directly from the result of Faigle & Kern [1991] pre-
sented above.

We note that Van Laarhoven, Aarts & Lenstra [1992] apply their result incor-
rectly. Lundy & Mees [1986] ‘proved’ for the homogeneous model that simulated
annealing converges to the set of optimal solutions in the case that the generation
probability G;; is given by 1/|N(i)| if j € N(i) and by 0 otherwise. However, as
observed by Kolonko [1999], in their proof they assumed that the neighborhood
graph is symmetric, yet they do not state this assumption explicitly. This leads
Van Laarhoven, Aarts & Lenstra [1992] to conclude from the result of Lundy &
Mees [1986] that simulated annealing converges to the set of optimal solutions if
the neighborhood graph is weakly optimally connected and a neighbor of solution
i is selected uniformly at random from its neighborhood N(i). As a consequence,
Van Laarhoven, Aarts & Lenstra [1992] claim that simulated annealing converges
to an optimal solution for JOB SHOP SCHEDULING when the neighborhood function
presented in Section 3.3 is applied. Kolonko [1999] shows that this conclusion is
incorrect.

Several authors have studied the convergence of simulated annealing for alter-
native acceptance probabilities; see Aarts, Korst & Van Laarhoven [1997]. How-
ever, in virtually all practical applications the acceptance probabilities chosen are
the same as those assumed in this book.

After the statistical analysis given in Section 8.4, which is based on Aarts &
Korst [1989], we discussed the convergence of simulated annealing in the realistic
inhomogeneous model in Section 8.5. The proof of the main result stated by Theo-
rem 8.13 is based on Anily & Federgruen [1987a] and Anily & Federgruen [1987b]
and Example 8.4 is due to Isaacson & Madsen [1976]. From Theorem 8.13 we
derived Corollary 8.3. This result is not the strongest known result. Hajek [1988]
proved that the constraint ¢; > IggAk in the cooling schedule may be weakened to

Ck > , where I is the maximum depth over all local optima that are not glob-

log(ll:+l)
ally optimal, where the depth of a local optimum is defined in Definition 1.14. It
can easily be verified that I' < dA. Furthermore, Hajek [1988] shows that I" is min-
imal in the sense that convergence to an optimal solution is no longer guaranteed if
> o g(l;{:r 1 is assumed with I” < T. An advantage of the approach we used for
proving convergence of simulated annealing is that we relate convergence in the ho-
mogeneous model to convergence in the inhomogeneous model. Besides providing
insight, Theorem 8.13 yields that if we are interested in whether simulated anneal-
ing converges if a given set of conditions is satisfied, including the condition that

Ck
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fa Edge | Weight Edge | Weight
Ly R, {L1,R} 3 {L2, Ry} 3
{L1,Ra} 4 {L2,R>} 4
b Rs {LiRsy | 5 {Ly,R3} | 6
R {L1,Ra} 8 {L2, Ry} 4
4

Figure 8.8. Complete bipartite graph with two left nodes and four right nodes, and
the weights of its edges.

the neighborhood graph must be strongly connected, then we only have to prove
convergence in the homogeneous model.

This chapter focuses on the infinite-time behavior of simulated annealing.
Finite-time implementations of simulated annealing are studied by Albrecht [2004],
Drost, Jansen & Wegener [2001], Jerrum [1992], Jerrum & Sorkin [1998], Mi-
tra, Romeo & Sangiovanni-Vincentelli [1986], Nolte & Schrader [1996], Nolte &
Schrader [1997], Nolte & Schrader [2000], Orosz & Jacobson [2002], Sasaki &
Hajek [1988], Sorkin [1991], Steinhofel, Albrecht & Wong [1998], and Wegener
[2005]. Most of them study the finite-time behavior of simulated annealing when
applied to a particular combinatorial optimization problem.

As a final remark we note that Exercise 2 is based on Motwani & Raghavan
[1995].

8.8 Exercises

1. Consider the complete bipartite graph given in Figure 8.8. This graph consists of
two left nodes (L; and L,) and four right nodes (R, Ry, R3, and R4). A weighted
edge exists between each pair of right and left nodes. The weights are also given
in Figure 8.8. The goal is to find a maximal matching with minimum weight.
A matching is defined as a set of edges in which no pair of edges has a node in
common. A matching is maximal if it is not possible to add another edge to the
set such that the set remains a matching. Note that in the graph of Figure 8.8 a
maximal matching consists of exactly two edges. The weight of a matching is
defined as the sum of the weights of all of the edges that the matching contains.
As a solution space for this problem, we consider the set of all maximal match-
ings. Furthermore, we define the following neighborhood. A matching M| is
a neighbor of matching M; (and vice versa) if M; can be obtained from M; by
removing an edge from M; and adding a new one.

a) Draw the neighborhood graph.

b) Indicate how to change the weight of a single edge, such that the neighbor-
hood function is no longer exact for this example.
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We carry out simulated annealing.

c) Let ¢ be the control parameter and let each neighbor of a matching be
generated with equal probability. Give generation matrix G, acceptance
matrix A, and the transition matrix P.

d) Give for each solution the probability that it is found at equilibrium for
cl0,c=1,and ¢ — eo.

2. Consider random search, which we defined in Section 7.1 as the metaheuristic
that performs a random walk through a neighborhood graph.

a) Model a run of random search as a Markov chain.

We apply random search on a neighborhood graph G = (V,E) that is non-
bipartite, finite, symmetric, and strongly connected. Theorem 8.3 states that a
finite homogeneous Markov chain is strongly ergodic if it is both irreducible and
aperiodic.

b) Prove the following generalization of Lemma 8.1. An irreducible finite
homogeneous Markov chain with transition matrix P is aperiodic if the
state transition graph contains a cycle of length / and a cycle of length
k with ged(l,k) = 1, i.e., if a pair i, j of states and a pair k,! of positive
integers with ged(l,k) = 1 exist such that (P¥); > 0 and (P');; > 0.

c¢) Prove that the homogeneous Markov chain associated with a run of random
search is strongly ergodic.

d) Prove that the stationary distribution ¢(c) to which the probability distribu-
tion of this Markov chain converges is defined by
o N
C21ElT

We define the hitting time h;; as the expected number of steps it takes random
search to reach solution j when starting at solution i. In the remainder of this ex-
ercise we study the hitting time of solutions for the three types of neighborhood
graphs depicted in Figure 8.9. We drop the constraint that the neighborhood
graph has to be non-bipartite.

e) Prove that if the neighborhood graph G is the complete graph on n nodes,
then h;; = n — 1 for any pair of solutions i, j.

We now consider the neighborhood graph that consists of a single path. We
number the solutions from 1 to n in the order they appear on the path. This mean
that N(1) = {2}, N(n) = {n—1},and N(i) = {i— 1,i+ 1} for | <i < n.
f) Prove that
1 ifi=1,
hi,n - hi+1,n - { 2+hi71,n _hi,n if 1 S i<n.

g) Give a closed expression for the difference ; ;, — hiy1, with 1 <i<n.
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Figure 8.9. (a) Complete neighborhood graph. (b) Neighborhood graph consisting
of a single path. (c) Lollipop neighborhood graph.

h) Use (g) to prove hy , = (n — 1)2

The third type of neighborhood graph that we consider is a combination of the
previous two types. It consists of a clique on |n/2] nodes. One of the nodes of
this clique is the first node of a path on the remaining nodes; see Figure 8.9(c).
We define u and v as the first and last node of the path, where the path is con-
nected to the clique via v. In Figure 8.9(c) we have u =1 and v = 6.

i) Prove that i, = ©(n?) and h,, = ©(n?).

3. In Definition 8.14 we give two equivalent definitions of the ergodic coefficient
oP) of a stochastic n x n matrix P. In this exercise we prove that the two
definitions are indeed equivalent.

a) Provethatforany 1 <i<j<n
1 n

n
Z |Pi — Pt = X [Py~ Pa]",
=1
where [x — y]* = max(0,x —y).

b) Prove that

n

1
1<I,n<1§1<n min(Pir, Pjr) = 21<I?<alx<n | i =Fil

by proving that forany 1 <i<j<n

n

n
Y [Py — Pyt =1—="Y min(Py, Py).

I=1 =1
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Graph Theory

In this book we assume that the reader is familiar with graph theory. However, as
a reminder and to avoid confusion that might be caused by the fact that different
definitions may be used in the literature for the same terminology, we present some
basic definitions from graph theory in this appendix. We restrict ourselves to the
terminology that is used elsewhere in this book and we do not aim to give an intro-
duction to graph theory. For such an introduction, we refer you to Wilson & Watkins
[1990] and Harary [1969].

A graph G = (V,E) consists of a set V of nodes, also called vertices, and a set
E containing multisets of V of cardinality two. The elements of E are called edges.
An edge {i, j} connects nodes i and j. If weights are assigned to the edges and/or
the nodes of a graph, then it is called a weighted graph. A graph is said to be planar
if it can be drawn in a plane, such that no two edges meet each other except at a
node to which they are both connected.

The edge set E may contain loops, which are edges from a node to itself. If we
want to emphasize that a graph does not contain loops, we call it a simple graph. If a
graph may contain both loops and multiple edges between the same pair of nodes it
is called a multigraph. Figure A.1(a) depicts a planar, unweighted graph G = (V,E)
with V ={1,2,3}and E = {{1,1},{1,2},{1,3},{2,3}}. The edge {1,1} is a loop.

A bipartite graph G = (V, E) is a special kind of graph in which the node set V
can be partitioned into two non-empty subsets, such that any edge has one end-point
in each of the two subsets. Figure A.1(b) shows a node-weighted bipartite graph,
where the weight of a node is written inside the circle by which it is represented.
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(a) (b) (©
Figure A.1. (a) Graph. (b) Weighted bipartite graph. (c) Digraph.

If the edges of a graph are directed, it is called a directed graph or digraph.
Formally, a digraph D = (V,A) is defined by a set V of nodes and a set A of arcs,
which are ordered pairs of nodes. An arc (i, ) is directed from node i to node j.
Analogously to undirected graphs, we use the term ‘simple digraph’ to indicate that
it may not contain loops. Figure A.1(c) gives a digraph obtained from Figure A.1(a)
by orienting the edges. More precisely, the digraph is defined by V = {1,2,3} and
E= {(17 1)7 (172)7 (37 1)7 (372)}

For an edge e = {, j} in an undirected graph G = (V,E), we say that ¢ is incident
with 7 and j and that i is adjacent to j. The number of edges incident with a node
i is called the degree of node i. For an arc a = (i, ) in a digraph D = (V,A), we
say that a is incident from i and incident to j. Furthermore, i and j are again called
adjacent. The number of arcs incident from a node i is called the outdegree of node
i, while the number of arcs incident to node i is called its indegree. For instance,
node 3 in the digraph of Figure A.1(c) has outdegree two and indegree zero while
the opposite is true for node 2.

Let G = (V,E) be a graph. A walk of length £ is a sequence (vi,va,...,vk) of
k nodes, such that {v;,vi;1} € E for all i with 1 <i < k. If we have v = v and
k > 1, then we say that the walk is closed. Hence, the sequence (1,2,4,2,3) defines
a walk in the graph of Figure A.2 of length five and (1,2,4,2,3,1) defines a closed
walk in this graph of length six. A walk in which all nodes are distinct is called
a path, and a closed walk in which all nodes are distinct except for the first and
last ones is called a cycle. If a path visits each node in G exactly once, then it is
said to be a Hamiltonian path. Analogously, a Hamiltonian cycle of G starts and
ends in the same node and visits each other node in G exactly once. It follows that
(1,2,4,6,5,3,1) is a Hamiltonian cycle in the graph of Figure A.2. The definitions
given easily translate to digraphs.

If graph G’ = (V',E') can be obtained from graph G = (V, E) by removing some
nodes and/or edges, i.e., if we have V' CV and E' C E, then we say that G’ is
a subgraph of G. For instance, the graph of Figure A.1(a) is a subgraph of the
graph of Figure A.2. Similarly, we can define a subgraph of a digraph. A graph
is said to be connected if it contains a path between any two nodes. If a digraph
contains for any pair of nodes i, j a path from i to j and a path from j to i, then
it is said to be strongly connected. If only the underlying graph of a digraph D is
connected, then we say that D is weakly connected, where the underlying graph of D
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3 5

Figure A.2. A graph with exactly two Hamiltonian cycles.

3 5

Figure A.3. A spanning tree of the graph of Figure A.2.

is obtained by replacing all its arcs by edges. We define a component of a (di)graph
as a non-extendable (weakly) connected sub(di)graph. Note that a (di)graph has a
unique subdivision into components. All example graphs given in this appendix are
connected. The digraph of Figure A.1(c), however, is only weakly connected as it
contains no path from nodes 1 and 2 to node 3 or from node 2 to node 1.

A tree is a connected graph T = (V, E) that does not contain any cycles. If tree
T is a subgraph of a graph G that contains all the nodes of G, then it is called a
spanning tree of G. Figure A.3 shows a spanning tree of the graph of Figure A.2.
Finally, we define an independent set of a graph G as a subset V' of its nodes, such
that no two nodes in V' are adjacent.



B

Complexity Theory
and Approximation Algorithms

We present a brief discussion on complexity theory and approximation algorithms.
For a more elaborate presentation, we refer to Bovet & Crescenzi [1994], Garey &
Johnson [1979], and Papadimitriou [1994].

An important performance criterion of an algorithm is the time it takes to pro-
duce a final answer. This time is conveniently expressed as a function of the input
size, i.e., the length of the encoding of a problem instance, as we expect the diffi-
culty of a problem to increase with its size. Furthermore, we are especially inter-
ested in the worst-case time requirements. Two important reasons for this are that a
worst-case time bound gives us a guarantee on when the algorithm will be finished
and that the time required on average by an algorithm is generally not substantially
better than the time required in the worst case. Formally, this means that the time re-
quirements of an algorithm are specified by a time complexity function f, which for
any positive integer n gives the maximum time f(n) that is spent by the algorithm
on problem instances of size n. The Turing machine is used as the computational
model.

An important distinction is made between algorithms that have a time com-
plexity function that can be bounded from above by a polynomial and algorithms
for which the time complexity function cannot be bounded from above by such a
polynomial. An algorithm is called a polynomial-time algorithm if it is of the for-
mer type and it is called an exponential-time algorithm if it is of the latter type.
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A pseudo-polynomial time algorithm is a special case of an exponential-time algo-
rithm: its time complexity function can be bounded from above by a polynomial
in both the input size and the magnitude of the largest number that occurs in the
problem instance.

It is commonly accepted that polynomial-time algorithms are considered to be
efficient, while exponential-time algorithms are not. One reason for this is that for
exponential-time algorithms there is an ‘explosive’ increase in the computing time
as the size of the problem instance increases. A second reason is that if, by advances
in technology, the speed of a computer were to increase by a given factor, then this
would only result in an additive increase in the size of the problem instances that can
be handled in a given amount of time for an exponential-time algorithm, whereas
for polynomial-time algorithms it would result in a multiplicative increase.

We say that an algorithm solves a combinatorial optimization problem if, on any
input x, it either outputs an optimal solution or concludes that x does not define a
valid problem instance. In accordance with the distinction between polynomial-time
and exponential-time algorithms already discussed, a combinatorial optimization
problem is said to be easy if a polynomial-time algorithm exists that solves the
problem and it is said to be hard if such an algorithm is not known and it is also
unlikely that it exists.

We now discuss the theory of NP-completeness, which formalizes the difference
between easy and hard problems. The theory deals with decision problems instead
of optimization problems. Decision problems are problems that have the answer
either ‘yes’ or ‘no’. Below we indicate that this causes no substantial loss of gen-
erality. To relate the computational complexity, i.e., the hardness, of two decision
problems, the concept of reducibility is useful. A decision problem IT is said to
be polynomially reducible to a problem IT if a polynomial-time algorithm A exists
that transforms an arbitrary input x of IT into an input .4(x) of IT, such that x defines
a yes-instance of IT if and only if 4 (x) defines a yes-instance of IT' (if x does not
define a valid problem instance, then it is considered as a no-instance). This means
that if TT is polynomially reducible to IT, then the existence of a polynomial-time
algorithm for IT implies the existence of a polynomial-time algorithm for IT. In
other words, problem IT is at least as hard as problem IT.

We define P as the class of all easy decision problems, i.e., the problems that can
be solved by a polynomial-time algorithm. Furthermore, we define NP as the class
of decision problems that can be solved in polynomial time by a non-deterministic
computer or, equivalently, for which it holds that each yes-instance has a certificate
that can be checked in polynomial time for validity, where the size of the certificate
is polynomially bounded in the size of the instance. Note that P C NP.

A problem IT from NP is said to be NP-complete if each problem from NP is
polynomially reducible to I1. This means that the NP-complete problems are the
hardest problems in NP; once we have an efficient algorithm for any NP-complete
problem, we can derive an efficient algorithm for all problems in NP, which implies
that P = NP. If a problem is NP-complete even when the input is encoded based on
the unary notation (in the unary notation the number 7 is represented by n 1’s), then
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Figure B.1. Relation between the classes P, NP, and NPC in the case that P # NP.

we say the problem is NP-complete in the strong sense. For a strongly NP-complete
problem, no pseudo-polynomial time algorithm exists unless P = NP. If an NP-
complete problem can be solved by a pseudo-polynomial time algorithm, then we
say that it is NP-complete in the ordinary sense. The relation between P, NP, and
NPC is visualized in Figure B.1, where NPC is the class of NP-complete decision
problems.

SATISFIABILITY was the first problem that was proved to be NP-complete. To
show that a problem IT" is NP-complete it now suffices to prove that IT is in NP and
that any known NP-complete problem IT is polynomially reducible to IT'. To prove
that IT' is NP-complete in the strong sense it suffices to show that the following
three additional requirements hold. (i) The NP-complete problem IT from which
we reduce is also NP-complete in the strong sense. (ii) The size of the instances
are not decreased too much by the polynomial-time algorithm .4 that reduces IT
to IT". More precisely, this means that the size of a problem instance I from IT is
bounded from above by a polynomial in the size of problem instance A(I) from IT.
(iii) If A increases the maximum value that occurs in an instance, then this increase
is bounded from above by a polynomial in the size of the instance from I1. For a
slightly less strict proof obligation we refer to Garey & Johnson [1979]. Ausiello
et al. [1999] and Garey & Johnson [1979] list a large number of problems that are
proved to be NP-complete. Since, until now, no polynomial-time algorithm has been
found for any NP-complete problem, it is believed that no such algorithm exists for
these problems. In other words, it is believed that P # NP.

We now indicate that restricting ourselves to decision problems does not cause
substantial loss of generality. Consider a combinatorial optimization problem that
asks for a solution s that satisfies some constraints and that minimizes a given cost
function c. With this problem we can associate the decision problem that asks for
a given bound B whether a solution s exists that satisfies the same constraints with
¢(s) < B. Once we have solved the combinatorial optimization problem, we only
need to compare c(s) to B to solve the decision variant. Hence, the combinatorial
optimization problem is at least as hard as the decision problem. Consequently, if
the decision problem is proved to be NP-complete, then the combinatorial optimiza-
tion problem is NP-hard, where a problem is called NP-hard if it is at least as hard as
any NP-complete problem. Garey & Johnson [1979] discuss that the combinatorial
optimization problem is generally also not harder than the associated decision prob-
lem. In Lemma B.1 this is proved for one particular problem. Note that although an
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efficient algorithm for an NP-hard combinatorial optimization problem is unlikely
to exist, it may exist for some special cases of the problem.

We denote the natural optimization counterparts of P and NP by PO and NPO,
respectively. The class NPO consists of combinatorial optimization problems for
which we can decide in polynomial time whether an input x defines a correct prob-
lem instance, for which the cost function is computable in polynomial time, and for
which it is decidable in polynomial time whether a string s defines a feasible solu-
tion, where the size of each feasible solution is polynomially bounded in the input
size. The complexity class PO contains those problems from NPO for which we can
derive an optimal solution in polynomial time. For more details we refer to Ausiello
et al. [1999] and Bovet and Crescenzi [1994].

As discussed, we can prove the hardness of a problem from NPO by showing
that the corresponding decision problem is NP-complete. An interesting question
is whether the class of the most difficult problems in NPO coincides with the class
of NP-hard problems in NPO. We therefore first need a reduction to relate the com-
plexity of two combinatorial optimization problems from NPO. A possible reduc-
tion introduced for this is the Turing reduction. A problem IT is said to be Turing
reducible to a problem IT if a polynomial-time algorithm A exists that solves IT,
where A may make use of an oracle that solves IT in constant time. Note that the
proposed reduction for decision problems, which is also called a Karp reduction or
polynomial transformation, is a special case of a Turing reduction. It corresponds to
the case where the oracle is consulted only once, namely at the end of 4. Note that a
Turing reduction does indeed have the desired property that if IT is Turing reducible
to IT, then IT is at least as hard as IT.

Using Turing reductions, we can now formalize the notion of an NP-hard opti-
mization problem as a problem to which all decision problems from NP are Turing
reducible. Furthermore, we can define the hardest problems in NPO, which are
called NPO-complete, as the problems to which all problems in NPO are Turing
reducible. Obviously, an NPO-complete problem is also NP-hard. To determine
whether an NP-hard problem is NPO-complete, we first analyze the computational
complexity of MAXIMUM VARIABLE-WEIGHTED SATISFIABILITY.

Definition B.1 [MAXIMUM VARIABLE-WEIGHTED SATISFIABILITY (MVSs)]. Given are a
set U = {x1,x2,...,x, } of binary variables, a set C of clauses over U, and a weight
w(x;) for each variable x;. A clause is satisfied by a given truth assignment if and
only if at least one of its literals is true. The problem is to find a truth assignment
that satisfies all clauses and that maximizes the sum of the weights of the variables
that are assigned the value 1, i.e., the value true. O

It can be verified that MVS € NPO. Let MVSge. € NP be the decision problem asso-
ciated with MVS, i.e., in MVSge. wWe are asked whether a feasible truth assignment
exists for which the cost is at least a given bound B. The following lemma states
that MVS and MV S, are equally hard.

Lemma B.1. MVS and MVSqe. are Turing reducible to each other.
Proof.  The claim that MVSge. is Turing reducible to MVS follows easily from
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the observation that MVSge. can be solved by first solving MVS and next checking
whether or not the cost of the solution returned is larger than bound B.

We now prove that MVS is Turing reducible to MVSge. as well, i.e., we present
a polynomial-time algorithm for MVS that uses an oracle for MVSge.. By using the
oracle, we can derive the optimal cost for MVS in polynomial time by performing a
binary search on the range [0, Y, w(x;)] of possible outcomes of the cost function to
obtain the maximum B for which the decision variant gives a positive answer. We
can now construct a polynomial-time algorithm that derives an optimal truth assign-
ment in n steps, where each step contains the algorithm described as a subroutine. In
the ith step, the algorithm constructs a problem instance y from the original prob-
lem instance by substituting the variables xj,x,...,x;—1 with the values we derived
for them in the first i — 1 steps and by substituting x; with 0. Furthermore, the al-
gorithm defines the problem instance I as Iy, except that x; is assigned the value
1 instead of the value 0. It next determines the optimal cost for [y and /; by the
subroutine described and, depending on which problem instance implies the largest
cost the value 0 or 1 is assigned to x;. It can easily be verified that the algorithm is
optimal and that it runs in polynomial time. As a result, we find that MVS is Turing
reducible to MVSgec. O

Using Lemma B.1 we can now answer the question stated above.

Theorem B.1. Let I1 be a problem in NPO and let Turing reducibility be used to
relate the complexity of problems. Then, I1 is NPO-complete if and only if 11 is
NP-hard.

Proof. As we have already indicated above, IT is NP-hard if it is NPO-complete.
Next, suppose that IT is NP-hard. We show that this implies that it is also NPO-
complete. Because IT is NP-hard, we have that MVSg.. is Turing reducible to II.
Furthermore, from Lemma B.1 we know that MVS is Turing reducible to MVSgec.
Combination of these two observations shows that MVS is Turing reducible to IT.
The NPO-completeness of IT now follows from the NPO-completeness of MVS.
Ausiello et al. [1999] have proved that MVS is already NPO-complete for an ap-
proximation preserving reduction that is stronger than a Turing reduction. O

Using the above theorem and lemma, we obtain the following result, which is often
stated in the literature, but seldom proved.

Theorem B.2. PO = NPO if and only if P = NP.

Proof. 1f PO = NPO holds, then all NP-hard problems from NPO, such as TSP,
can be solved in polynomial time. Hence, PO = NPO implies P = NP. Conversely,
if P = NP holds, then the decision problem MVSg.. can be solved in polynomial
time. According to Lemma B.1 this means that the NP-hard problem MVS can also
be solved in polynomial time. Using Theorem B.1, this observation yields that all
problems in NPO can be solved in polynomial time, i.e., PO = NPO. ]

If either the computation time is more important than optimality or an optimal so-
lution is unattainable in a reasonable amount of time because, for example, the
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problem is NP-hard (NPO-complete), one can resort to an algorithm that gives a
feasible solution fast, but which does not necessarily give an optimal solution. Such
an algorithm is called an approximation algorithm. Since for most algorithms the
difference between the cost of a solution given by the algorithm and the optimal cost
increases with the size of the instance, it is natural to use the relative difference to
measure the quality of the solutions given by an approximation algorithm.

Definition B.2. Let 4 be an approximation algorithm for a given combinatorial
optimization problem. Then R is a performance bound of A for a given problem
instance [ if
A(T) <R
OPT(I) —
holds in the case of a minimization problem and if
OPT(I)
A(I)
holds in the case of a maximization problem, where A(I) is the cost of the solution
given by A for instance I and OPT (1) is the optimal cost of . The smallest possible
value of R is called the performance ratio of A for I. O

<R

The terms ‘performance bound’ and ‘performance ratio’ are also used to describe
the worst-case performance of an approximation algorithm.

Definition B.3. Let .4 be an approximation algorithm for a given combinatorial op-
timization problem. Then R is a performance bound of A if it is a performance
bound of A for all problem instances. If R is minimal, then R is called the perfor-
mance ratio of A. m|

Definition B.4. If approximation algorithm .4 has performance bound R, then A is
called an R-approximation algorithm. O

We already discussed that it is unlikely that the NP-hard problems from NPO can be
solved in polynomial time as probably P # NP. To indicate the different behaviors
of these combinatorial optimization problems with respect to their approximability
properties, we identify the following three approximability classes.

o The class APX contains the problems from NPO for which a polynomial-time
approximation algorithm exists with some finite constant performance ratio.

o The class PTAS contains the problems from NPO that admit a polynomial-
time approximation scheme (PTAS), where a PTAS is an algorithm that takes
as input both a problem instance / and a precision € > 0, and that returns a
solution with a performance bound of 1+ €. The running time of a PTAS
has to be bounded from above by a polynomial in the size |I| of the problem
instance, but may be exponential in é

e The class FPTAS contains the problems from NPO that admit a fully
polynomial-time approximation scheme (FPTAS), where an FPTAS is a PTAS
whose running time is bounded from above by a polynomial in both the input
size |I| and | .
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Figure B.2. Relation between the classes PO, FPTAS, PTAS, APX, and NPO in the
case that P £ NP.

Clearly, we have PO C FPTAS C PTAS C APX C NPO. Furthermore, all inclusions
are strict unless P = NP [Ausiello et al., 1999]. The relation between the classes of
combinatorial optimization problems presented is visualized in Figure B.2.

Besides the assumption P # NP we also prove complexity results in this book
that hold under the assumption NP # co-NP. The complexity class co-NP is defined
as the class NP but with the roles of ‘yes’ and ‘no’ exchanged. This means that,
while in a decision problem from NP each yes-instance has a certificate that can
be checked in polynomial time for validity, a decision problem in co-NP has the
property that each no-instance has a disqualification that can be checked in polyno-
mial time for validity. An example of a problem in co-NP is HAMILTONIAN PATH
COMPLEMENT, where the problem is to decide whether a graph has no Hamiltonian
path.

The condition NP # co-NP is stronger than the condition P # NP, as can be seen
as follows. Obviously, if IT € NP\ co-NP, then the complementary problem I'T¢ is in
co-NP\ NP and vice versa. Hence, NP # co-NP implies NP Z co-NP. Furthermore,
as the class P is closed under complementation, we have P C co-NP. Combination
of these two results gives that NP # co-NP implies P # NP. The opposite, however,
need not hold, i.e., it may be the case that NP = co-NP although P # NP. This
proves that the condition NP # co-NP is indeed stronger than the condition P 7 NP.
Nevertheless, there is a firm belief that NP # co-NP also holds as no one has ever
succeeded in showing that HAMILTONIAN PATH COMPLEMENT or any other co-NP
complete problem is in NP.



PLS-Complete Problems

In this appendix we give a list of local search problems for which it has been proved
that they are PLS-complete.

MAX-2SAT

Problem:
Given are a set U of binary variables and a set C of clauses over U, where the
number of literals in each clause is at most two. Furthermore, we are given a
weight w(c) € Nt for each clause ¢ € C. A clause is satisfied by a truth assign-
ment if and only if at least one of its literals is true. The problem is to find a
truth assignment that maximizes the sum of the weights of the clauses that are
satisfied.

Solution space:
The set of all possible truth assignments.

Neighborhood function:

a) The flip neighborhood function in which truth assignment ¢’ is a neighbor
of truth assignment ¢ if and only if # can be obtained from ¢ by changing
the value of one variable.

b) The Kernighan-Lin neighborhood function, which is obtained by applying
variable-depth search to the flip neighborhood function. This means that
truth assignment ¢’ is a neighbor of truth assignment 7 if and only if ' can
be obtained from 7 by performing a sequence of flips, where in each step the
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most profitable (least unprofitable) flip is chosen from the flips that change
the value of a variable that has not been flipped before. An arbitrary rule
may be used for breaking ties.

Result:
MAX-2SAT/flip has been proven to be tightly PLS-complete by Schiffer & Yan-
nakakis [1991] via a tight PLS-reduction from MAX-CUT/flip. In a similar way,
we can prove that MAX-2SAT/Kernighan-Lin is tightly PLS-complete via a tight
PLS-reduction from MAX-CUT/Kernighan-Lin.

MAX-4SAT WITH BOUNDED VARIABLE OCCURRENCE

Problem:
Given are a set U of binary variables and a set C of clauses over U. The number
of literals in each clause is at most four, and each variable occurs at most M
times, where M is a constant. Furthermore, we are given a weight w(c) € Nt
for each clause ¢ € C. A clause is satisfied by a truth assignment if and only if
at least one of its literals is true. The problem is to find a truth assignment that
maximizes the sum of the weights of the clauses that are satisfied.

Solution space:
The set of all possible truth assignments.

Neighborhood function:
The flip neighborhood function in which truth assignment ¢’ is a neighbor of
truth assignment ¢ if and only if #' can be obtained from 7 by changing the value
of one variable.

Result:
Klauck [1996] proves that the induced local search problem is tightly PLS-
complete via a tight PLS-reduction from MIN-CIRCUIT/flip. Prior to Klauck,
Krentel [1989] proved that the local search problem is tightly PLS-complete in
the case that the number of literals per clause is bounded by a constant larger
than four.

MAX-CUT

Problem:
Given is an edge-weighted graph G = (V,E) with a weight w(e) € Nt for each
edge e € E. Find a partition of node set V into two subsets V| and V>, such that
the sum of the weights of the edges from E that have one endpoint in V| and one
endpoint in V, is maximal, i.e., such that

Y wle)

ecEN(V)xV3)

is maximal.
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Solution space:
The set of all possible partitions of the node set into two subsets.

Neighborhood function:

a) The flip neighborhood function in which partition (V{,V;) is a neighbor of
partition (Vi,V») if and only if (V],V;) can be obtained from (Vi,V2) by
moving a single node from one subset to the other one.

b) The Kernighan-Lin neighborhood function, which is obtained from the flip
neighborhood function by applying variable-depth search. This means that
a partition (V{,Vj) is a Kernighan-Lin neighbor of partition (V1,V>) if and
only if (V{,V;) can be obtained from (Vi,V,) by performing a sequence
of flips, where in each step the most profitable (least unprofitable) flip is
chosen from the flips that do not move a node that has already been moved
before. An arbitrary rule may be used for breaking ties.

Result:
Schiffer & Yannakakis [1991] prove that MAX-CUT/flip is tightly PLS-complete
via a tight PLS-reduction from POS NAE MAX-3SAT/flip. Analogously, one can
derive that MAX-CUT/Kernighan-Lin is also tightly PLS-complete via a tight
PLS-reduction from POS NAE MAX-3SAT/Kernighan-Lin.

For cubic graphs and edge weights that may be both positive and negative, Poljak
[1995] proves that MAX-CUT/flip is solvable in polynomial time. More precisely,
he shows that iterative improvement with the flip neighborhood function runs
in O(n?) time, regardless of the pivoting rule used. He also shows that this
time complexity is tight for the pivoting rule that selects an improving move
randomly.

MAXIMUM WEIGHTED INDUCED SUBGRAPH WITH PROPERTY I1

Problem:

Given is a node-weighted graph G = (V,E) with a weight w(v) € N* for each
node v € V. A subset V' C V of the nodes is said to be feasible if the sub-
graph of G induced by V' has property I1. The property IT must be hereditary,
which means that if any graph satisfies I1, then all node-induced subgraphs of
the graph also satisfy I1, and it must be non-trivial, which means that infinitely
many graphs satisfy IT and infinitely many graphs violate I1. Furthermore, the
property must be verifiable in polynomial time. Find a feasible subset V' CV
that maximizes X,y w(v).

Solution space:
The set of all feasible subsets of V that are maximal, i.e., that cannot be extended
without violating property I1.

Neighborhood function:
The extended swap neighborhood function that defines the neighborhood of a
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subset V' such that it contains for each v € V the subset W,, where W, is derived
from V' by the following algorithm.

If graph Gy = (V,0) satisfies I, then subset W, is given by V' minus all nodes
that are adjacent to v. Otherwise, W, is given by V' minus all nodes that are not
adjacent to v. Next, add v to W, in the case that v ¢ W,, and the subgraph induced
by W, U {v} satisfies TI. Finally, extend W, to a maximal feasible subset in a
greedy way. This means that we add to W, the nodes u € V \ W, for which the
subgraph of G induced by W, U {u} satisfies IT in a non-increasing weight order.

Result:

For the case that property I1 is ‘has no edges’, it can be shown that the deriva-
tion of a local optimum is PLS-complete via a reduction from MAX-2SAT/flip
[Schiffer & Yannakakis, 1991]. Note that the subgraph of G induced by a subset
V' of the node set has no edges if and only if V' is an independent set of G. Based
on this PLS-completeness result, Shimozono [1997] proves PLS-completeness
for any IT that is hereditary, non-trivial, and verifiable in polynomial time. For
the local search problem to be a member of PLS, it must be possible to compute
an initial solution in polynomial time. This is the case because Lewis & Yan-
nakakis [1980] prove that if a property I1 is hereditary and non-trivial, then all
cliques and/or all independent sets satisfy IT.

METRIC TRAVELING SALESMAN PROBLEM (METRIC TSP)
Problem:

Given are a set C = {1,2,...,n} of n cities and an n x n matrix d, where entry
d;j € N defines the distance from city i to city j. The matrix d is symmetric
and it satisfies the triangle inequality, which means that for all i, j, k € C we have
dij = dj; and d;j < djx + di;. Find a tour with minimum total tour length, i.e.,
find a permutation T of C that minimizes

n—1
D (i) a(i+1) T e 2(1)-
i=1

Solution space:

The set of all possible tours.

Neighborhood function:

a) The k-change neighborhood function in which tour T’ is a neighbor of tour
T if and only if T’ can be obtained by replacing at most k edges in T by new
edges.

b) The Lin-Kernighan' neighborhood function, which is a variant of the
neighborhood function proposed by Lin & Kernighan [1973]. The
Lin-Kernighan' neighborhood LK'(1) of a tour T is obtained as follows.
Let N3(t) be the set of all improving 3-change neighbors of tour t. If
N3(t) # 0, then LK'(7) is defined as N3(t). Otherwise, LK'(t) is obtained
by adding for each pair of adjacent edges ¢!, ¢!" with ™™ € 1, € ¢ 1,
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out

(a) (b) ()

Figure C.1. (a) Tour containing edge ¢°™, but not ¢™", where the two edges satisfy
d(e™) < d(e°"). (b) One-tree obtained by removing edge ¢°* and inserting edge e".
(c) Only Hamiltonian path P that can be obtained from this one-tree by removing an
edge adjacent to ™.

and d(e") < d(e®™) the tour that is constructed by the following algorithm,
where d(e) denotes d; ; for edge e = {i, j}. See Figure C.1(a) for an exam-
ple of ¢t and ¢'™.
We first remove edge ¢ from T. This results in a Hamiltonian path. We
turn this Hamiltonian path into a one-tree (spanning tree plus one edge) by
adding edge e'"; see Figure C.1(b). We now determine uniquely the edge
e{" adjacent to ¢, the removal of which results again in a Hamiltonian
path. We remove " from the one-tree and we call the resulting Hamilto-
nian path P. This operation is visualized in Figure C.1(c).
This ends the initialization phase of our algorithm. The second phase pro-
ceeds in iterations, where in iteration , i > 1, a Hamiltonian path P; is con-
structed from Hamiltonian path P;_; with Py = P by adding an edge ei" and
by removing an edge ei.‘jrl. More precisely, iteration i works as follows.
We start with the Hamiltonian path P;_;. This path has the property that
one of its endpoints is contained in both ¢®* and ¢™. The other endpoint
will change and is correspondingly called the active endpoint. Consider all
edges ei" ¢ T leaving the active endpoint, such that the weight of the one-
tree obtained by adding ei.n to P;_1 is smaller than the length of the original
tour T, i.e., such that

%(d (ef") —d(ef)) >0,
where eJ"! = ¢t and el = ¢'". If no such edges exist, then we end phase two
of the algorithm and proceed with the last phase. If such edges exist, then
we choose from these edges one that maximizes d(e") — d(el"), where
out is determined uniquely by e/ in the same way as e§"!
uniquely by e'". Ties are broken lexicographically. We add edge e/ to P;_;
and next remove edge e?jfl. We now start the next iteration.
In the third and last phase of the algorithm we determine for each derived
Hamiltonian path P; the length of the tour obtained by connecting the two

e is determined
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endpoints. The best of these tours is returned by the algorithm and thus
added to LK'(1).

Result:

To prove that METRIC TSP and one of the above neighborhood functions yield
a (tightly) PLS-complete local search problem, it suffices to prove this result
for SYMMETRIC TSP. The triangle inequality can be satisfied by adding a large
value to each distance d;;. Krentel [1989] proves that METRIC TSP/k-change
is tightly PLS-complete for a huge value of k. He proves this result via a
tight PLS-reduction from the local search problem induced by MAX-4SAT WITH
BOUNDED VARIABLE OCCURRENCE and the flip neighborhood function. Via
a tight PLS-reduction from MAX-2SAT/flip Papadimitriou [1992] and Papadim-
itriou, Schiiffer & Yannakakis [1990] prove that METRIC TSP/Lin-Kernighan' is
also tightly PLS-complete.

MIN-CIRCUIT

Problem:
Given is a Boolean circuit D with n input nodes x1,x3, . . . ,x,, and m output nodes
Y1,¥2,-..,¥m. Find a solution s € {0,1}" that, when given as an input to D,
minimizes the cost function

fls)=Y 27y
i=1

Solution space:
The set {0, 1}" of all possible input vectors of the circuit.

Neighborhood function:
The flip neighborhood function in which solution (vector) s’ is a neighbor of s if
and only if s’ can be obtained by changing the value of a single bit in vector s.

Result:

MIN-CIRCUIT/flip is tightly PLS-complete as shown by Johnson, Papadimitriou
& Yannakakis [1988] and Yannakakis [1997]. The variant MAX-CIRCUIT/flip,
in which the cost function has to be maximized instead of minimized, is
also tightly PLS-complete [Johnson, Papadimitriou & Yannakakis, 1988; Yan-
nakakis, 1997]. For a proof of these two results we refer to Theorems 6.4
and 6.10. The generic term for MIN-CIRCUIT/flip and MAX-CIRCUIT/flip is CIR-
culT/Alip.

MINIMUM WEIGHTED INDEPENDENT DOMINATING SET FOR
GRAPHS WITH BOUNDED DEGREE

Problem:
Given is a node-weighted graph G = (V,E) with a weight w(v) € Nt for each
node v € V and with a maximum degree of at most B, where B is a constant. A
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subset V! C V of the nodes is called an independent set if no two nodes in V’
are joined by an edge in E, and V' is called a dominating set if each node v in
V\ V' is joined by an edge in E to at least one node in V'. Find an independent,
dominating set V' C V that minimizes Y, ¢y w(v).

Solution space:
The set of all independent, dominating sets.

Neighborhood function:
The k-flip neighborhood function in which the neighborhood of an independent,
dominating set V' is obtained by adding k; nodes to V' and by removing k, nodes
from V', where k; and k, are two non-negative integers that satisfy ki + k» < k.

Result:
Klauck [1996] proves that the induced local search problem is tightly PLS-
complete for a sufficiently large k. He proves this result via a reduction from
MAX-4SAT WITH BOUNDED VARIABLE OCCURRENCE and the flip neighbor-
hood function.

POSITIVE NOT-ALL-EQUAL MAX-3SAT (POS NAE MAX-3SAT)

Problem:

Given are a set U of binary variables, a set C of clauses over U, and a weight
w(c) € NT for each clause ¢ € C. A clause does not contain negative literals, and
the number of positive literals plus the number of constants in each clause is at
most three. A clause is satisfied by some truth assignment if and only if it con-
tains at least one literal/constant with value true and at least one literal/constant
with value false. The problem is to find a truth assignment that maximizes the
sum of the weights of clauses that are satisfied.

Solution space:
The set of all possible truth assignments.

Neighborhood function:

a) The flip neighborhood function in which a truth assignment ¢’ is a neighbor
of truth assignment 7 if and only if #' can be obtained from 7 by changing
the value of one variable.

b) The Kernighan-Lin neighborhood function, which is obtained by applying
variable-depth search to the flip neighborhood function. This means that
this neighborhood function is defined, such that truth assignment 7’ is a
neighbor of truth assignment ¢ if and only if ¢’ can be derived from ¢ by
performing a sequence of flips, where in each step the most profitable (least
unprofitable) flip is chosen from the flips that change the value of a variable
that has not been flipped before. An arbitrary rule may be used for breaking
ties.

Result:
Schiffer & Yannakakis [1991] prove that POS NAE MAX-3SAT/flip is
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tightly PLS-complete, and Yannakakis [1997] proves that POS NAE MAX-
3sAT/Kernighan-Lin is tightly PLS-complete. Both results are proved via a re-
duction from CIRCUIT/flip. For a proof of the latter result, we refer to Lemma 6.2
and Theorem 6.10.

PURE NASH EQUILIBRIA IN CONGESTION GAMES
Problem:

Given is a congestion game, which is defined by a set {1,2,...,n} of n players,
a set E of resources, and for each player i an action set S; C 2E  Furthermore,
we are given a delay functiond : E x {1,2,...,n} — Z, such that d(e, ) is non-
decreasing in j. An action combination is an element of S| X S X --- X S, and it
defines for each player the set of resources it picks. For any action combination
s = (s1,52,...,5,) we define f(e) = |[{i | e € s;}| as the congestion of resource e
and u;(s) = — Y.y, d(e, fi(e)) as the payoff function of player i. Find an action
combination s for the congestion game that minimizes the cost function

fs(e)
Y Y dle, ).

e€E j=1

Solution space:

The set of all possible action combinations.

Neighborhood function:

The switch neighborhood function in which action combination s’ is a neighbor
of action combination s if and only if s’ can be obtained from s by changing the
action of one player.

Result:

An action combination s is called a pure Nash equilibrium of the congestion
game if changing the action of a player i does not improve the payoff of that
player, i.e., if for any player i we have u;(s) > u;(s}), where s; only differs
from s in the action of player i. The local optima with respect to the switch
neighborhood function correspond to pure Nash equilibria for the given con-
gestion game [Fabrikant, Papadimitriou & Talwar, 2004; Rosenthal, 1973]. Via
a tight PLS-reduction from POS NAE MAX-3SAT/flip Fabrikant, Papadimitriou
& Talwar [2004] prove that the problem of finding a local optimum is tightly
PLS-complete. They also prove that this remains true if the congestion game is
symmetric, which means that each player has the same action set.

A special type of congestion game is a network congestion game. In such a
game the action sets are represented by paths in a directed graph. To be more
precise, we are given a directed graph and, for each player i, a source node v;
and a sink node w;. The arcs now correspond to resources, and each path from
v; to w; defines an action that is available to player i.

Fabrikant, Papadimitriou & Talwar [2004] prove that finding a switch local op-
timum is tightly PLS-complete for asymmetric network congestion games and
that it can be done in polynomial time for symmetric network congestion games.
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STABLE CONFIGURATION

Problem:
Given is a Hopfield network that is defined by an edge-weighted simple graph
G = (V,E) with a weight w(e) € Z for each edge e € E and a threshold value T,
foreach node v € V. A configuration f : V — {—1, 1} assigns to each node v the
value —1 or 1. The value f(v) is called the state of node v. Find a configuration
f that maximizes the cost function

Y wl{uy ) f) = X Tf).
{u,v}€E veV

Solution space:

The set of all possible configurations.

Neighborhood function:
The flip neighborhood function in which configuration f” is a neighbor of con-
figuration f if and only if f’ can be obtained from f by changing the state of
exactly one node.

Result:
Via a tight PLS-reduction from MAX-CUT/flip, Schiffer & Yannakakis [1991]
prove that the problem of finding a local optimum is already tightly PLS-
complete if 7, = 0 for each node v € V and if all weights on the edges are
negative. The set of local optima corresponds to the set of stable configura-
tions of the Hopfield network [Hopfield, 1982], where a configuration f is said
to be stable if we have
f)y=1= 3% w{uy)fw>T,

{u,v}€E

and
f0)==1= % wl{uy})f(u) <T.

{u,v}€E

For more details we refer to Section 2.6.

UNIFORM GRAPH PARTITIONING (UGP)

Problem:
Given is an edge-weighted graph G = (V, E) with |V| =2n and a weight w(e) € N
for each edge e € E. Find a partition of V into two subsets V; and V, with
[Vi] = |V2| = n, such that the sum of the weights of the edges that have one
endpoint in V| and one endpoint in V; is minimal, i.e., such that

Y wle)

eEEﬂ(Vl ><V2)
is minimal.
Solution space:
The set of all possible partitions.
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Neighborhood function:

a)

b)

c)

d)

Result:

The swap neighborhood function in which partition (V{,V;) is a neighbor
of partition (V1, V) if and only if (V{,V]) can be obtained from (V1,V>) by
interchanging a node from V; with a node from V5.

The Kernighan-Lin neighborhood function [Kernighan & Lin, 1970], which
is obtained by applying variable-depth search to the swap neighborhood
function. This means that partition (V{,V;) is a Kernighan-Lin neighbor
of partition (Vi, V) if and only if (V{,V;) can be derived from (V;,V>) by
performing a sequence of swaps, where in each step the most profitable
(least unprofitable) swap is chosen from the swaps that operate on nodes that
have not been swapped before. An arbitrary rule may be used for breaking
ties.

The Fiduccia-Mattheyses neighborhood function [Fiduccia & Mattheyses,
1982], which differs from the Kernighan-Lin neighborhood function in that
each swap is performed in two steps. This means that partition (V{,V;) is a
Fiduccia-Mattheyses neighbor of (V1,V») if and only if (V{,V;) can be ob-
tained from (V1,V2) by performing a sequence of steps, where a single step
proceeds as follows. First of all, we look for a node for which a move to the
other subset would be most profitable (least unprofitable), where we only
consider nodes that have not been moved before. We move this node to the
other subset. Next, we balance the partition by performing the most prof-
itable (least unprofitable) move in the opposite direction where, again, we
only consider nodes that have not been moved before. As in the Kernighan-
Lin neighborhood function, an arbitrary rule may be used for breaking ties.

The FM-swap neighborhood function. This is a simplification of the
Fiduccia-Mattheyses neighborhood function: a partition contains only one
neighbor, namely the first Fiduccia-Mattheyses neighbor.

Schéffer & Yannakakis [1991] prove that UGP/swap and UGP/FM-swap are
tightly PLS-complete via a tight PLS-reduction from MAX-CUT/flip. In a sim-
ilar way, MAX-CUT/Kernighan-Lin can be reduced to both UGP/Kernighan-Lin
and UGP/Fiduccia-Mattheyses, which proves that these two problems are also
tightly PLS-complete. In Theorems 6.5 and 6.10 we prove that UGP/Kernighan-

Lin

is tightly PLS-complete via a tight PLS-reduction from POS NAE MAX-

3SAT/Kernighan-Lin. This proof is based on Yannakakis [1997]. Johnson, Pa-
padimitriou & Yannakakis [1988] were the first to prove that UGP/Kernighan-Lin
is PLS-complete.

0-1 INTEGER PROGRAMMING

Problem:
Given are two vectors b € Z™ and ¢ € N and an m x n matrix A with elements
a;j € Z. A vector x € {0,1}" is called a feasible solution if it satisfies Ax > b.
Find a feasible solution x that minimizes ¢” x.
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Solution space:
The set of all feasible solutions.

Neighborhood function:
The k-flip neighborhood function in which solution (vector) x' is a neighbor of x
if and only if x’ can be obtained by changing the value of at most & bits in x.

Result:
Klauck [1996] proves that the induced local search problem is tightly PLS-
complete for a sufficiently large k. This result is proved via a reduction from
MAX-4SAT WITH BOUNDED VARIABLE OCCURRENCE with the flip neighbor-
hood function.



Bibliography

AARTS, E.H.L., AND J. KORST [1989], Simulated Annealing and Boltzmann Machines,
Wiley.

AARTS, E.H.L.,J. KORST, AND P.J.M. VAN LAARHOVEN [1997], Simulated annealing, in:
E.H.L. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization,
Wiley, 91-120.

AARTS, E.H.L., AND J.K. LENSTRA (eds.) [1997], Local Search in Combinatorial Opti-
mization, Wiley.

AARTS, E.H.L., AND M. VERHOEVEN [1997], Local search, in: M. Dell’ Amico, F. Maffi-
oli, and S. Martello (eds.), Annotated Bibliographies in Combinatorial Optimization,
Wiley, 163-180.

ALBRECHT, A.A. [2004], A problem-specific convergence bound for simulated annealing-
based local search, Proceedings of the International Conference on Computational
Science and its Applications, Assisi, Italy, 405-414.

ALIMONTI, P. [1995], Non-oblivious local search for graphs and hypergraph coloring prob-
lems, Proceedings of the 215" Workshop on Graph-Theoretic Concepts in Computer
Science, Aachen, Germany, 167—180.

ALIMONTI, P. [1997], Non-oblivious local search for MAX 2-CCSP with application to
MAX DICUT, Proceedings of the 23" Workshop on Graph-Theoretic Concepts in
Computer Science, Berlin, Germany, 2—-14.

ANGEL, E., AND V. ZISSIMOPOULOS [1998], On the quality of local search for the quadratic
assignment problem, Discrete Applied Mathematics 82, 15-25.

ANILY, S., AND A. FEDERGRUEN [1987a], Ergodicity in parametric nonstationary Markov
chains: An application, Operations Research 35, 867-874.

ANILY, S., AND A. FEDERGRUEN [1987b], Simulated annealing methods with general ac-
ceptance probabilities, Journal of Applied Probability 24, 657-667.

APPEL, K., AND W. HAKEN [1977], Every planar map is four colorable. Part I: Discharging,
Lllinois Journal of Mathematics 21, 429-490.

APPEL, K., AND W. HAKEN [1989], Every Planar Map is Four Colorable, American
Mathematical Society, Contemporary Mathematics 98.

APPEL, K., W. HAKEN, AND J. KOCH [1977], Every planar map is four colorable. Part II:
Reducibility, lllinois Journal of Mathematics 21, 491-567.

ARKIN, E.M., AND R. HASSIN [1998], On local search for weighted k-set packing, Mathe-
matics of Operations Research 23, 640—648.

ARMSTRONG, D.E., AND S.H. JACOBSON [2003], Studying the complexity of global ver-
ification for NP-hard discrete optimization problems, Journal of Global Optimiza-
tion 27, 83-96.

ARORA, S. [1998], Polynomial-time approximation schemes for Euclidean traveling sales-
man and other geometric problems, Journal of the ACM 45, 753-782.

ARYA, V., N. GARG, R. KHANDEKAR, A. MEYERSON, K. MUNAGALA, AND V. PANDIT



212 Bibliography

[2004], Local search heuristic for k&-median and facility location problems, SIAM
Journal on Computing 33, 544-562.

AUSIELLO, G., P. CRESCENZI, G. GAMBOSI, V. KANN, A. MARCHETTI-SPACCAMELA,
AND M. PROTASI [1999], Complexity and Approximation: Combinatorial Optimiza-
tion Problems and Their Approximability Properties, Springer.

BAFNA, V., B. NARAYANAN, AND R. RAVI [1996], Nonoverlapping local alignments
(weighted independent sets of axis-parallel rectangles), Discrete Applied Mathemat-
ics 71, 41-53.

BEALE, E.M.L. [1988], Introduction to Optimization, Wiley.

BELLARE, M., O. GOLDREICH, AND M. SUDAN [1998], Free bits, PCPs, and nonapprox-
imability - towards tight results, SIAM Journal on Computing 27, 804-915.

BERMAN, A., AND R.J. PLEMMONS [1979], Nonnegative matrices in the mathematical
sciences, Academic Press.

BERMAN, P. [2000], A d/2 approximation for maximum weight independent set in d-claw
free graphs, Nordic Journal of Computing 7, 178—184.

BERN, M., AND P. PLASSMANN [1989], The Steiner problem with edge lengths 1 and 2,
Information Processing Letters 32, 171-176.

Bock, F. [1958], An algorithm for solving ‘traveling-salesman’ and related network opti-
mization problems: Abstract, presented at the 14 National Meeting of the Opera-
tions Research Society of America.

BOVET, D., AND P. CRESCENZI [1994], Introduction to the Theory of Complexity, Prentice-
Hall.

Boykov, Y., O. VEKSLER, AND R. ZABIH [1998], Markov random fields with efficient
approximations, Proceedings of the 1998 IEEE Conference on Computer Vision and
Pattern Recognition, Santa Barbara, CA, 648-655.

Boykov, Y., O. VEKSLER, AND R. ZABIH [2001], Fast approximate energy minimization
via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence 23,
1222-1239.

BRUCKER, P. [1995], Scheduling Algorithms, Springer.

BRUCKER, P., J. HURINK, AND F. WERNER [1997], Improving local search heuristics for
some scheduling problems, Discrete Applied Mathematics 72, 47-69.

BRUGGEMANN, T., J. MONNOT, AND G.J. WOEGINGER [2003], Local search for the min-
imum label spanning tree problem with bounded color classes, Operations Research
Letters 31, 195-201.

BYLKA, S., A. IDZIK, AND Z. TUzZA [1999], Maximum cuts: Improvements and local
algorithmic analogues of the Edwards-Erdos inequality, Discrete Mathematics 194,
39-58.

CERNY, V. [1985], Thermodynamical approach to the traveling salesman problem: An ef-
ficient simulation algorithm, Journal of Optimization Theory and Applications 45,
41-51.

CHANDRA, B., AND M.M. HALLDORSSON [2001], Greedy local improvement and
weighted packing approximation, Journal of Algorithms 39, 223-240.

CHANDRA, B., H. KARLOFF, AND C. TOVEY [1999], New results on the old k-opt algo-
rithm for the traveling salesman problem, SIAM Journal on Computing 28, 1998—
2029.

CHARIKAR, M., AND S. GUHA [1999], Improved combinatorial algorithms for the facility
location and k-median problems, Proceedings of the 40" Annual Symposium on
Foundations of Computer Science, New York City, NY, 378-388.



Bibliography 213

CHIBA, N., T. NISHIZEKI, AND N. SAITO [1981], A linear 5-coloring algorithm of planar
graphs, Journal of Algorithms 2, 317-327.

CHO, Y., AND S. SAHNI [1980], Bounds for list schedules on uniform processors, SIAM
Journal on Computing 9, 91-103.

CHRISTOFIDES, N. [1976], Worst-case analysis of a new heuristic for the traveling sales-
man problem, Technical Report 388, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA.

CoOK, W.J., W.H. CUNNINGHAM, W.R. PULLEYBLANK, AND A. SCHRIJVER (eds.)
[1998], Combinatorial Optimization, Wiley.

CORNE, D., M. DORIGO, AND F. GLOVER (eds.) [1999], New Ideas in Optimization,
McGraw-Hill.

CORNUEJOLS, G., AND G.L. NEMHAUSER [1978], Tight bounds for Christofides’ traveling
salesman heuristic, Mathematical Programming 14, 116-121.

CROES, G.A. [1958], A method for solving traveling-salesman problems, Operations Re-
search 6, 791-812.

DANTSIN, E., A. GOERDT, E.A. HIRSCH, R. KANNAN, J. KLEINBERG, C.H. PAPADIM-
ITRIOU, P. RAGHAVAN, AND U. SCHONING [2002], A deterministic (2 — kil)”
algorithm for k-SAT based on local search, Theoretical Computer Science, 69-83.

DAvis, J.S., AND J.J. KANET [1993], Single-machine scheduling with early and tardy com-
pletion costs, Naval Research Logistics 40, 85-101.

DEINEKO, V.G., M. HOFFMANN, Y. OKAMOTO, AND G.J. WOEGINGER [2004], The trav-
eling salesman problem with few inner points, Proceedings of the 10" International
Computing and Combinatorics Conference, Jeju Island, Korea, 268-277.

DELL’AMICO, M., F. MAFFIOLI, AND S. MARTELLO (eds.) [1997], Annotated Bibliogra-
phies in Combinatorial Optimization, Wiley.

DELL’ AMICO, M., AND M. TRUBIAN [1993], Applying tabu search to the job-shop schedul-
ing problem, Annals of Operations Research 41, 231-252.

D1IKSTRA, E.W. [1959], A note on two problems in connexion with graphs, Numerische
Mathematik 1, 269-271.

DROST, S., T. JANSEN, AND I. WEGENER [2001], Dynamic parameter control in simple
evolutionary algorithms, Proceedings of the 6'" Workshop on Foundations of Genetic
Algorithms, Charlottesville, VA, 275-294.

DUECK, G., AND T. SCHEUER [1990], Threshold accepting: A general purpose optimiza-
tion algorithm appearing superior to simulated annealing, Journal of Computational
physics 90, 161-175.

FABRIKANT, A., C.H. PAPADIMITRIOU, AND K. TALWAR [2004], The complexity of pure
Nash equilibria, Proceedings of the 36" ACM Symposium on Theory of Computing,
Chicago, IL, 604—612.

FAIGLE, U., AND W. KERN [1991], Note on the convergence of simulated annealing algo-
rithms, SIAM Journal on Control and Optimization 29, 153-159.

FEIGE, U., AND J. KILIAN [1998], Zero knowledge and the chromatic number, Journal of
Computer and System Sciences 57, 187-199.

FEIGLE, U., M. KARPINSKI, AND M. LANGBERG [2002], Improved approximation of
MAX-CUT on graphs of bounded degree, Journal of Algorithms 43, 201-219.

FELLER, W. [1950], An Introduction to Probability Theory and Its Applications; Volume 1,
Wiley.

FEO, T.A., AND M.G.C. RESENDE [1989], A probabilistic heuristic for a computationally
difficult set covering problem, Operations Research Letters 8, 67-71.



214 Bibliography

FESTA, P., AND M.G.C. RESENDE [2002], GRASP: An annotated bibliography, in: C.C.
Ribeiro and P. Hansen (eds.), Essays and Surveys on Metaheuristics, Kluwer Aca-
demic Publishers, 325-367.

Fibuccia, C.M., AND R.M. MATTHEYSES [1982], A linear-time heuristic for improving
network partitions, Proceedings of the 19" ACM/IEEE Design Automation Confer-
ence, Los Alamitos, CA, 175-181.

FINN, G., AND E. HOROWITZ [1979], A linear-time approximation algorithm for multipro-
cessor scheduling, BIT 19, 312-320.

FISCHER, S.T. [1995], A note on the complexity of local search problems, Information
Processing Letters 53, 69-75.

FLOOD, M.M. [1956], The traveling salesman problem, Operations Research 4, 61-75.

FouLps, L.R. [1984], Combinatorial Optimization for Undergraduates, Springer.

GAREY, M.R., R.L. GRAHAM, AND D.S. JOHNSON [1976], Some NP-complete geometric
problems, Proceedings of the 8" AcM Symposium on Theory of Computing, New
York, NY, 10-22.

GAREY, M.R., R.L. GRAHAM, AND D.S. JOHNSON [1977], The complexity of computing
Steiner minimal trees, SIAM Journal on Applied Mathematics 32, 835-859.

GAREY, M.R., AND D.S. JOHNSON [1979], Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman and Company.

GAREY, M.R., D.S. JOHNSON, AND R. SETHI [1976], The complexity of flowshop and
jobshop scheduling, Mathematics of Operations Research 1, 117-129.

GAREY, M.R., D.S. JOHNSON, AND L. STOCKMEYER [1976], Some simplified NP-
complete graph problems, Theoretical Computer Science 1, 237-267.

GAREY, M.R., R.E. TARJAN, AND G.T. WILFONG [1988], One-processor scheduling with
symmetric earliness and tardiness penalties, Mathematics of Operations Research 13,
330-348.

GIBBONS, A. [1985], Algorithmic Graph Theory, Cambridge University Press.

GLOVER, F. [1986], Future paths for integer programming and links to artificial intelligence,
Computers and Operations Research 13, 533-549.

GLOVER, F., AND G. KOCHENBERGER (eds.) [2003], Handbook of Metaheuristics, Kluwer
Academic Publishers.

GLOVER, F., AND M. LAGUNA [1997], Tabu Search, Kluwer Academic Publishers.

GOLDBERG, D.E. [1989], Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley.

GONZALEZ, T., AND S. SAHNI [1978], Flowshop and jobshop schedules: Complexity and
approximation, Operations Research 26, 36-52.

GRAHAM, R.L., E.L. LAWLER, J.K. LENSTRA, AND A.H.G. RINNOOY KAN [1979], Op-
timization and approximation in deterministic sequencing and scheduling: A survey,
Annals of Discrete Mathematics S, 287-326.

GRIMMETT, G.R., AND D.R. STIRZAKER [1992], Probability and Random Processes, Ox-
ford University Press.

GUPTA, A., AND E. TARDOS [2000], A constant factor approximation algorithm for a class
of classification problems, Proceedings of the 32" ACM Symposium on Theory of
Computing, Portland, OR, 652-658.

GUTIN, G., AND A.P. PUNNEN (eds.) [2002], The Traveling Salesman Problem and Its
Variations, Kluwer Academic Publishers.

HAJEK, B. [1988], Cooling schedules for optimal annealing, Mathematics of Operations
Research 13, 311-329.



Bibliography 215

HAKEN, A. [1989], Connectionist networks that need exponential time to stabilize, unpub-
lished manuscript, Department of Computer Science, University of Toronto, Toronto,
Canada.

HALLDORSSON, M.M. [1993], A still better performance guarantee for approximate graph
coloring, Information Processing Letters 45, 19-23.

HALLDORSSON, M.M. [1995], A still better performance guarantee for approximate graph
coloring, Proceedings of the 6" ACM-SIAM Symposium on Discrete Algorithms, San
Francisco, CA, 160-169.

HALLDORSSON, M.M., AND H.C LAU [1997], Low-degree graph partitioning via local
search with applications to constraint satisfaction, max cut, and 3-coloring, Journal
of Graph Algorithms and Applications 1, 1-13.

HANSEN, P. [1986], Presented at the Congress on Numerical Methods in Combinatorial
Optimization, Capri, Italy.

HANSEN, P., AND B. JAUMARD [1990], Algorithms for the maximum satisfiability problem,
Computing 44, 279-303.

HARARY, F. [1969], Graph Theory, Addison-Wesley.

HASSIN, R., A. LEVIN, AND D. MORAD [2003], Lexicographic local search and the p-
center problem, European Journal of Operational Research 151, 265-279.

HeAwooOD, P.J. [1890], Map colour theorem, Quarterly Journal of Pure and Applied Math-
ematics 24, 332-338.

HIrscH, E.A. [2003], Worst-case study of local search for MAX-k-SAT, Discrete Applied
Mathematics 130, 173-184.

HOLLAND, J.H. [1975], Adaptation in Natural and Artificial Systems, University of Michi-
gan Press.

Hoos, H.H., AND T. STUTZLE [2004], Stochastic Local Search: Foundations and Applica-
tions, Morgan Kaufmann.

HOPFIELD, J.J. [1982], Neural networks and physical systems with emergent collective
computational abilities, Proceedings of the National Academy of Sciences of the
United States of America 79, 2554-2558.

HURKENS, C.A.J., AND A. SCHRIJVER [1989], On the size of systems of sets every ¢
of which have an SDR, with an application to the worst-case ratio of heuristics for
packing problems, SIAM Journal on Discrete Mathematics 2, 68—72.

HURKENS, C.A.J., AND T. VREDEVELD [2003], Local search for multiprocessor schedul-
ing: How many moves does it take to a local optimum?, Operations Research Let-
ters 31, 137-141.

ISAACSON, D., AND R. MADSEN [1976], Markov Chains, Wiley.

JERRUM, M. [1992], Large cliques elude the Metropolis process, Random Structures and
Algorithms 3, 347-359.

JERRUM, M., AND G.B. SORKIN [1998], The Metropolis algorithm for graph bisection,
Discrete Applied Mathematics 82, 155-175.

JOHNSON, D.S. [1990], Local optimization and the traveling salesman problem, Proceed-
ings of the 17" Colloquium on Automata, Languages, and Programming, Warwick
University, England, 446-461.

JOHNSON, D.S., AND L.A. MCGEOCH [1997], The traveling salesman problem: A case
study, in: E.H.L. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Opti-
mization, Wiley, 215-310.

JOHNSON, D.S., C.H. PAPADIMITRIOU, AND M. YANNAKAKIS [1988], How easy is local
search?, Journal of Computer and System Sciences 37, 79-100.



216 Bibliography

KANUNGO, T., D.M. MOUNT, N.S. NETANYAHU, C.D. PIATKO, R. SILVERMAN, AND
A.Y. WU [2002], A local search approximation algorithm for k-means clustering,
Proceedings of the 18" Annual Symposium on Computational Geometry, Barcelona,
Spain, 10-18.

KEMPE, A.B. [1879], On the geographical problem of the four colors, American Journal of
Mathematics 2, 193-200.

KERNIGHAN, B.W., AND S. LIN [1970], An efficient heuristic procedure for partitioning
graphs, The Bell System Technical Journal 49, 291-307.

KHANNA, S., R. MOTWANI, M. SUDAN, AND U. VAZIRANI [1998], On syntactic versus
computational views of approximability, SIAM Journal on Computing 28, 164—191.

KIRKPATRICK, S., C.D. GELATT, JR., AND M.P. VECCHI [1983], Optimization by simu-
lated annealing, Science 220, 671-680.

KLAUCK, H. [1996], On the hardness of global and local approximation, Proceedings of the
5" Scandinavian Workshop on Algorithm Theory, Reykjavik, Iceland, 88-99.
KNUTH, D.E. [1998], The Art of Computer Programming; Volume 3, Sorting and Searching,

Addison-Wesley.

KoLONKO, M. [1999], Some new results on simulated annealing applied to the job shop
scheduling problem, European Journal of Operational Research 113, 123-136.

KORTE, B., AND J. VYGEN [2002], Combinatorial Optimization: Theory and Algorithms,
Springer.

KoruproLU, M., C.G. PLAXTON, AND R. RAJARAMAN [2000], Analysis of a local search
heuristic for facility location problems, Journal of Algorithms 37, 146-188.

KRENTEL, M.W. [1989], Structure in locally optimal solutions, Proceedings of the 30'h
Annual Symposium on Foundations of Computer Science, Los Alamitos, CA, 216-
221.

LAARHOVEN, P.J.M. VAN [1988], Theoretical and Computational Aspects of Simulated An-
nealing, Ph.D. thesis, Eindhoven University of Technology, The Netherlands.
LAARHOVEN, P.J.M. VAN, E.H.L. AARTS, AND J.K. LENSTRA [1992], Job shop schedul-

ing by simulated annealing, Operations Research 40, 113—125.

LANGSTON, M. A. [1982], Improved 0/1-interchange scheduling, BIT 22, 282-290.

LAWLER, E.L. [1976], Combinatorial Optimization: Networks and Matroids, Holt, Rine-
hart, and Winston.

LAWLER, E.L., J.LK. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS (eds.)
[1985], The Traveling Salesman Problem, Wiley.

LEEUWEN, J. VAN, AND A.A. SCHOONE [1981], Untangling a traveling salesman tour in
the plan, Proceedings of the 7 Conference on Graph Theoretic Concepts in Com-
puter Science, Miinchen, Germany, 87-98.

LENSTRA, J.K., A.H.G. RINNOOY KAN, AND P. BRUCKER [1977], Complexity of ma-
chine scheduling problems, Annals of Discrete Mathematics 1, 343-362.

LEWIS, J.M., AND M. YANNAKAKIS [1980], The node-deletion problem for hereditary
properties is NP-complete, Journal of Computer and System Sciences 20, 219-230.

LIN, S. [1965], Computer solutions of the traveling salesman problem, Bell System Technical
Journal 44, 2245-2269.

LIN, S., AND B.W. KERNIGHAN [1973], An efficient heuristic algorithm for the traveling-
salesman problem, Operations Research 21, 498-516.

LORENCO, H.R., O. MARTIN, AND T. STUTZLE [2003], Iterated local search, in: F. Glover
and G. Kochenberger (eds.), Handbook of Metaheuristics, Kluwer Academic Pub-
lishers, 321-353.



Bibliography 217

Lu, H., AND R. RAVI [1992], The power of local optimization: approximation algorithms
for maximum leaf spanning tree, Proceedings of the 30" Annual Allerton Conference
on Communication, Control, and Computing, Urbana, IL, 533-542.

LUECKER, G. [1976], unpublished manuscript, Department of Computer Science, Princeton
University, Princeton, NJ.

LUNDY, M., AND A. MEES [1986], Convergence of an annealing algorithm, Mathematical
Programming 34, 111-124.

MATSUO, H., C.J. SUH, AND R.S. SULLIVAN [1988], A controlled search simulated an-
nealing method for the general job shop scheduling problem, Working paper 03-04-
88, Graduate School of Business, University of Texas, Austin, TX.

METROPOLIS, M., A. ROSENBLUTH, M. ROSENBLUTH, A. TELLER, AND E. TELLER
[1953], Equation of state calculations by fast computing machines, Journal of Chem-
ical Physics 21, 1087-1092.

MICHALEWICZ, Z. [1992], Genetic Algorithms + Data Structures = Evolution Programs,
Springer.

MICHALEWICZ,Z., AND D.B. FOGEL [2000], How to Solve It: Modern Heuristics,
Springer.

MITRA, D., F. ROMEO, AND A.L. SANGIOVANNI-VINCENTELLI [1986], Convergence
and finite-time behavior of simulated annealing, Advances in Applied Probability 18,
747-771.

MOTWANI, R., AND P. RAGHAVAN [1995], Randomized Algorithms, Cambridge University
Press.

MUHLENBEIN, H., M. GORGES-SCHLEUTER, AND O. KRAMER [1988], Evolution algo-
rithms in combinatorial optimization, Parallel Coputing 7, 65-85.

NEMHAUSER, G.L., AND L.A. WOLSEY [1988], Integer and Combinatorial Optimization,
Wiley.

NICHOLSON, T.A.J. [1971], A method for optimizing permutation problems and its in-
dustrial appications, in: D.J.A. Welsh (ed.), Combinatorial Mathematics and Its
Applications, Academic Press, 201-217.

NOLTE, A., AND R. SCHRADER [1996], Simulated annealing and its problems to color
graphs,  Proceedings of the 4" Annual European Symposium on Algorithms,
Barcelona, Spain, 138-151.

NOLTE, A., AND R. SCHRADER [1997], Coloring in sublinear time, Proceedings of the 5th
Annual European Symposium on Algorithms, Graz, Austria, 388—401.

NOLTE, A., AND R. SCHRADER [2000], A note on the finite time behavior of simulated
annealing, Mathematics of Operations Research 25, 476-484.

O’HEIGEARTAIGH, M., J.K. LENSTRA, AND A.H.G. RINNOOY KAN (eds.) [1985], Com-
binatorial Optimization: Annotated Bibliographies, Wiley.

ORr, I. [1976], Traveling salesman-type combinatorial problems and their relation to the
logistics of regional blood banking, Ph.D. thesis, Northwestern University, Evanston,
IL.

ORLIN, J.B., A.P. PUNNEN, AND A.S. SCHULZ [2004], Approximate local search in com-
binatorial optimization, STAM Journal on Computing 33, 1201-1214.

OROSZ, J.E., AND S.H. JACOBSON [2002], Finite-time performance analysis of static simu-
lated annealing algorithms, Computational Optimization and Applications 21, 21-53.

OSBORNE, L.J., AND B.E. GILLETT [1991], A comparison of two simulated annealing
algorithms applied to the directed Steiner problem in networks, ORSA Journal on
Computing 3, 213-225.



218 Bibliography

OsMAN, I.LH., AND G. LAPORTE [1996], Metaheuristics: A bibliography, Annals of Oper-
ations Research 63, 513-623.

PAPADIMITRIOU, C.H. [1977], The Euclidean traveling salesman problem is NP-complete,
Theoretical Computer Science 4, 237-244.

PAPADIMITRIOU, C.H. [1992], The complexity of the Lin-Kernighan heuristic for the trav-
eling salesman problem, SIAM Journal on Computing 21, 450-465.

PAPADIMITRIOU, C.H. [1994], Computational Complexity, Addison-Wesley.

PAPADIMITRIOU, C.H., A.A. SCHAFFER, AND M. YANNAKAKIS [1990], On the complex-
ity of local search, Proceedings of the 221 ACM Symposium on Theory of Comput-
ing, Baltimore, MD, 438-445.

PAPADIMITRIOU, C.H., AND K. STEIGLITZ [1977], On the complexity of local search for
the traveling salesman problem, SIAM Journal on Computing 6, 76—83.

PAPADIMITRIOU, C.H., AND K. STEIGLITZ [1978], Some examples of difficult traveling
salesman problems, Operations Research 26, 434-443.

PAPADIMITRIOU, C.H., AND K. STEIGLITZ [1982], Combinatorial Optimization, Prentice-
Hall.

PAPADIMITRIOU, C.H., AND S. VEMPALA [2000], On the approximability of the travel-
ing salesman problem, Proceedings of the 32 ACM-SIAM Symposium on Theory
of Computing, Portland, OR, 126-133, The paper contains errors that affected the
results. A corrected version of the paper can be found on the authors’ homepages.

PINEDO, M.L. [1995], Scheduling: Theory, Algorithms, and Systems, Prentice Hall.

PiTsouLis, L.S., AND M.G.C. RESENDE [2002], Greedy randomized adaptive search pro-
cedures, in: P.M. Pardalos and M.G.C. Resende (eds.), Handbook of Applied Opti-
mization, Oxford University Press, 168—183.

POLIJAK, S. [1995], Integer linear programs and local search for max-cut, SIAM Journal on
Computing 24, 822-839.

PRrIM, R.C. [1957], Shortest connection networks and some generalizations, Bell System
Technical Journal 36, 1389—-1401.

PUNNEN, A.P., M. MARGOT, AND S.N. KABADI [2003], TSP heuristics: Domination
analysis and complexity, Algorithmica 35, 111-127.

RAGHAVACHARI, B. [1997], Algorithms for finding low degree structures, in: D.S.
Hochbaum (ed.), Approximation Algorithms for NP-hard Problems, PWS Publish-
ing Company, 266-295.

REEVES, C.R. (ed.) [1993], Modern Heuristic Techniques for Combinatorial Problems, Wi-
ley.

REINELT, G. (ed.) [1994], The Traveling Salesman: Computational Solutions for TSP Ap-
plications, Springer.

RIBEIRO, C.C., AND P. HANSEN (eds.) [2002], Essays and Surveys on Metaheuristics,
Kluwer Academic Publishers.

ROBERTSON, N., D. SANDERS, P. SEYMOUR, AND R. THOMAS [1997], The four-colour
theorem, Journal of Combinatorial Theory, Series B 70, 2-44.

ROBINS, G., AND A. ZELIKOVSKY [2000], Improved Steiner tree approximation in graphs,
Proceedings of the 10" ACM-SIAM Symposium on Discrete Algorithms, San Fran-
cisco, CA, 770-779.

ROSENTHAL, R.W. [1973], A class of games possessing pure-strategy Nash equilibria, In-
ternational Journal of Game Theory 2, 65-67.

ROY, B., AND B. SUSSMANN [1964], Les Problemes d’ordonnancement avec contraintes
disjonctives, Technical Report Note DS No. 9 bis, SEMA, Montrouge, France.



Bibliography 219

SAATY, T.L., AND P.C. KAINEN [1977], The Four-Color Problem: Assaults and Conquest,
McGraw-Hill.

SAHNI, S., AND T. GONZALEZ [1976], P-complete approximation problems, Journal of the
Association for Computing Machinery 23, 555-565.

SALAMON, P., P. SIBANI, AND R. FROST [2002], Facts, Conjectures, and Improvements
for Simulated Annealing, SIAM Monographs on Mathematical Modeling and Com-
putation.

SASAKI, G., AND B. HAJEK [1988], The time complexity of maximum matching by simu-
lated annealing, Journal of the ACM 35, 387—403.

SCHAFFER, A.A., AND M. YANNAKAKIS [1991], Simple local search problems that are
hard to solve, SIAM Journal on Computing 20, 56-87.

SCHILHAM, R.M.F. [2001], Commonalities in Local Search, Ph.D. thesis, Eindhoven Uni-
versity of Technology, The Netherlands.

SCHRIJVER, A. [2003], Combinatorial Optimization, Springer.

ScHULZ, A.S., R. WEISMANTEL, AND G.M. ZIEGLER [1995], 0/1-integer programming:
Optimization and augmentation are equivalent, Proceedings of the 3" Annual Euro-
pean Symposium on Algorithms, Corfu, Greece, 473—483.

SCHUURMAN, P., AND T. VREDEVELD [2001], Performance guarantees of local search for
multiprocessor scheduling, Proceedings of the 8" Conference on Integer Program-
ming and Combinatorial Optimization, Utrecht, The Netherlands, 370-382.

SENETA, E. [1981], Non-negative Matrices and Markov Chains, Springer.

SHIMOZONO, S. [1997], Finding optimal subgraphs by local search, Theoretical Computer
Science 172, 265-271.

SIPSER, M. [1997], Introduction to the Theory of Computation, PWS Publishing Company.

SMITH, W.E. [1956], Various optimizers for single-stage production, Naval Research Lo-
gistics Quarterly 3, 59-66.

SORKIN, G.B. [1991], Efficient simulated annealing on fractal energy landscapes, Algorith-
mica 6, 367-418.

STADLER, P.F., AND W. SCHNABL [1992], The landscape of the traveling salesman prob-
lem, Physics Letters A 161, 337-344.

STEINHOFEL, K., A.A. ALBRECHT, AND C.K. WONG [1998], On various cooling sched-
ules for simulated annealing applied to the job shop problem, Proceedings of the 2"¢
International Workshop on Randomized and Approximation Techniques in Computer
Science, Barcelona, Spain, 260-279.

TOVEY, C. [1997], Local improvement on discrete structures, in: E.H.L. Aarts and J.K.
Lenstra (eds.), Local Search in Combinatorial Optimization, Wiley, 57-89.

ULDER, N.L.J., E.H.L. AARTS, H.J. BANDELT, P.J.M. VAN LAARHOVEN, AND
E. PESCH [1991], Genetic local search algorithms for the traveling salesman prob-
lem, Proceedings of the 15" Workshop on Parallel Problem Solving from Nature,
Dortmund, Germany, 109-116.

VREDEVELD, T. [2002], Combinatorial Approximation Algorithms: Guaranteed Versus Ex-
perimental Performance, Ph.D. thesis, Eindhoven University of Technology, The
Netherlands.

WASSERMAN, P.D. [1989], Neural Computing: Theory and Practice, Van Nostrand Rein-
hold.

WEGENER, I. [2005], Simulated annealing beats Metropolis in combinatorial optimization,
Proceedings of the 32" International Colloquium on Automata, Languages and Pro-
gramming, Lisbon, Portugal, 589-601.



220 Bibliography

WILSON, R.J., AND J.J. WATKINS [1990], Graphs: An Introductory Approach, Wiley.

WINKER, P. [2001], Optimization Heuristics in Econometrics: Applications of Threshold
Accepting, Wiley.

YANNAKAKIS, M. [1997], Computational complexity, in: E.H.L. Aarts and J.K. Lenstra
(eds.), Local Search in Combinatorial Optimization, Wiley, 19-55.



Author Index

A Croes, G.A., 34
Aarts, E.H.L., 10, 51, 60, 145, 146, 181, Cunningham, W.H., 9
182
Albrecht, A.A., 183 D
Alimonti, P., 90 Dantsin, E., 90
Angel, E., 90 Davis, J.S., 50
Anily, S., 182 Deineko, V.G., 89
Appel, K., 35 Dell’ Amico, M., 9, 60
Arkin, E.M., 90 Dijkstra, E.-W., 34
Armstrong, D.E., 91 Dorigo, M., 146
Arora, S., 14, 34 Drost, S., 183
Arya, V., 90 Dueck, G., 145
Ausiello, G., 14, 193-195, 197
F
B Fabrikant, A., 206
Bafna, V., 90 Faigle, U., 181, 182
Bandelt, H.J., 146 Federgruen, A., 182
Beale, EM.L.,9 Feige, U., 35
Bellare, M., 35 Feigle, U., 90
Berman, A., 154 Feller, W., 157, 181
Berman, P., 90 Feo, T.A., 146
Bern, M., 34 Festa, P, 146
Bock, F.,, 34 Fiduccia, C.M., 208
Bovet, D., 191, 194 Finn, G., 89
Boykov, Y., 90 Fischer, S.T., 131
Briiggemann, T., 90 Flood, M.M., 34
Brucker, P., 34, 49, 132 Fogel, D.B., 10, 146
Bylka, S., 90 Foulds, L.R., 9
Frost, R., 145
C
Cerny, V., 145 G
Chandra, B., 89, 90, 132 Gambosi, G., 14, 193-195, 197
Charikar, M., 90 Garey, M.R., 2, 14, 34-36, 50, 51, 133,
Chiba, N., 35 191, 193
Cho, Y., 90 Garg, N., 90
Christofides, N., 14 Gelatt, Jr., C.D., 145
Cook, W.J., 9 Gibbons, A., 34
Corne, D., 146 Gillett, B.E., 34
Cornuejols, G., 14 Glover, F., 10, 145, 146

Crescenzi, P, 14, 191, 193-195, 197 Goerdt, A., 90



222 Author Index

Goldberg, D.E., 146 Karpinski, M., 90
Goldreich, O., 35 Kempe, A.B., 35
Gonzalez, T., 14, 51 Kern, W., 181, 182
Gorges-Schleuter, M., 146 Kernighan, B.W., 36, 145, 202, 208
Graham, R.L., 14, 34 Khandekar, R., 90
Grimmett, G.R., 157 Khanna, S., 89, 90
Guha, S., 90 Kilian, J., 35
Gupta, A., 90 Kirkpatrick, S., 145
Gutin, G., 34 Klauck, H., 200, 205, 209
Kleinberg, J., 90
H Knuth, D.E., 89
Hajek, B., 182, 183 Koch, J., 35
Haken, A., 133 Kochenberger, G., 10, 146
Haken, W., 35 Kolonko, M., 182
Halldérsson, M.M., 35, 90 Korst, J., 145, 181, 182
Hansen, P., 10, 90, 145, 146 Korte, B., 9
Harary, F., 187 Korupolu, M., 90
Hassin, R., 90 Krimer, O., 146
Heawood, P.J., 35 Krentel, M.W., 200, 204
Hirsch, E.A., 90
Hoffmann, M., 89 L
Holland, J.H., 146 Laarhoven, P.J.M. van, 50, 51, 60, 146,
Hoos, H.H., 10 181, 182
Hopfield, J.J., 36, 207 Laguna, M., 145
Horowitz, E., 89 Langberg, M., 90
Hurink, J., 132 Langston, M.A., 90
Hurkens, C.A.J., 90, 132, 133 Laporte, G., 146
Lau, H.C, 90
I Lawler, E.L., 9, 34
Idzik, A., 90 Leeuwen, J. van, 132
Isaacson, D., 157, 173, 175, 181, 182 Lenstra, J.K., 9, 10, 34, 49, 51, 60, 146,
181, 182
J Levin, A., 90
Jacobson, S.H., 91, 183 Lewis, J.M., 202
Jansen, T., 183 Lin, S., 34, 36, 145, 202, 208
Jaumard, B., 90 Lorenco, H.R., 146
Jerrum, M., 183 Lu, H., 90
Johnson, D.S., 2, 14, 34-36, 50, 51, 98, Luecker, G., 132
131, 133, 146, 191, 193, 204, Lundy, M., 182
208
M
K Miihlenbein, H., 146
Kabadi, S.N., 91, 132 Madsen, R., 157, 173, 175, 181, 182
Kainen, PC, 34 Mafﬁoli, F., 9
Kanet, J.J., 50 Marchetti-Spaccamela, A., 14, 193-195,
Kann, V., 14, 193-195, 197 197
Kannan, R., 90

Margot, M., 91, 132
Kanungo, T., 90 Martello, S., 9
Karloff, H., 89, 132



Martin, O., 146

Matsuo, H., 60
Mattheyses, R.M., 208
McGeoch, L.A., 34, 36
Mees, A., 182
Metropolis, M., 145
Meyerson, A., 90
Michalewicz, Z., 10, 146
Mitra, D., 183

Monnot, J., 90

Morad, D., 90

Motwani, R., 89, 90, 183
Mount, D.M., 90
Munagala, K., 90

N
Narayanan, B., 90
Nembhauser, G.L., 9, 14
Netanyahu, N.S., 90
Nicholson, T.A.J., 34
Nishizeki, T., 35
Nolte, A., 183

(0]
O’Heigeartaigh, M., 9
Okamoto, Y., 89
Or,1,34
Orlin, J.B., 91
Orosz, J.E., 183
Osborne, L.J., 34
Osman, I.H., 146

P
Pandit, V., 90

Papadimitriou, C.H., 9, 14, 34, 35, 89-91,
98, 131-133, 191, 204, 206,

208
Pesch, E., 146
Piatko, C.D., 90
Pinedo, M.L., 34
Pitsoulis, L.S., 146
Plassmann, P., 34
Plaxton, C.G., 90
Plemmons, R.J., 154
Poljak, S., 201
Prim, R.C., 34

Protasi, M., 14, 193-195, 197

Pulleyblank, W.R., 9

Author Index

Punnen, A.P, 34,91, 132

R
Raghavachari, B., 90
Raghavan, P., 90, 183
Rajaraman, R., 90
Ravi, R., 90
Reeves, C.R., 10
Reinelt, G, 34
Resende, M.G.C., 146
Ribeiro, C.C., 10, 146

Rinnooy Kan, A.H.G., 9, 34, 49

Robertson, N., 35
Robins, G., 34
Romeo, F., 183
Rosenbluth, A., 145
Rosenbluth, M., 145
Rosenthal, R.W., 206
Roy, B., 50

S
Saaty, T.L., 34
Sahni, S., 14, 51, 90
Saito, N., 35
Salamon, P., 145
Sanders, D., 35

Sangiovanni-Vincentelli, A.L., 183

Sasaki, G., 183

223

Schiffer, A.A., 133, 200-202, 204, 205,

207, 208
Schoning, U., 90
Scheuer, T., 145
Schilham, R.M.E,, 146
Schnabl, W., 60
Schoone, A.A., 132
Schrader, R., 183
Schrijver, A., 9, 90
Schulz, A.S., 91
Schuurman, P., 90
Seneta, E., 181
Sethi, R., 51
Seymour, P., 35
Shimozono, S., 202
Shmoys, D.B., 34
Sibani, P., 145
Silverman, R., 90
Sipser, M., 104
Smith, WE., 49



224 Author Index

Sorkin, G.B., 183
Stiitzle, T., 10, 146
Stadler, P.F., 60
Steiglitz, K., 9, 34, 89, 91, 132
Steinhofel, K., 183
Stirzaker, D.R., 157
Stockmeyer, L., 35, 36
Sudan, M., 35, 89, 90
Suh, C.J., 60

Sullivan, R.S., 60
Sussmann, B., 50

T
Talwar, K., 206
Tardos, E., 90
Tarjan, R.E., 50
Teller, A., 145
Teller, E., 145
Thomas, R., 35
Tovey, C., 89, 132, 133
Trubian, M., 60
Tuza, Z., 90

U
Ulder, N.L.J., 146

\%
Vazirani, U., 89, 90
Vecchi, M.P., 145
Veksler, O., 90
Vempala, S., 14
Verhoeven, M., 10
Vredeveld, T., 90, 132, 133
Vygen, J., 9

w
‘Wasserman, P.D., 36
Watkins, J.J., 187
Wegener, 1., 183
Weismantel, R., 91
Werner, E., 132
Wilfong, G.T., 50
Wilson, R.J., 187
Winker, P., 145

Woeginger, G.J., 89, 90

Wolsey, L.A., 9
Wong, C.K., 183
Wu, AY., 90

Y

Yannakakis, M., 90, 98, 131, 133, 200-
202, 204-208

Z
Zabih, R., 90
Zelikovsky, A., 34
Ziegler, G.M., 91

Zissimopoulos, V., 90



Subject Index

Symbols
(1,2)-Tsp, 92
N-optimal, 5
R-approximation algorithm, 196
k-Opt, 15
k-change neighborhood function, 15, 53,
60, 65, 93, 120, 122, 124, 202
performance bound, 72, 80, 89, 92
performance ratio, 72, 80, 89, 92
k-change neighborhood graph
degree, 54
diameter, 54, 60, 61
k-flip neighborhood function, 204, 208
k-SET PACKING, 90
kSAT, 90
0-1 INTEGER PROGRAMMING/k-flip
tightly PLS-complete, 208

A
acceptance matrix, 152
acceptance probability, 137, 152
action combination, 206
action set, 206
adjacent, 188
algorithm, 191
R-approximation, 196
k-Opt, 15
approximation, 196
Block Shifting, 42, 51
bubble sort, 64
Christofides’ algorithm, 73
constructive, 2
exponential time, 192
FPTAS, 196
genetic algorithm, 142
genetic local search, 142
GRASP, 141
heuristic, 2
hill climbing, 4

iterated Lin-Kernighan algorithm,
146
iterated local search, 141, 147
iterative improvement, 4, 146
time complexity, 120
longest path, 47
memetic algorithm, 143
Metropolis algorithm, 138
minimum spanning tree, 24, 38
multistart, 141
nearest-neighbor algorithm, 142
performance bound, 196
performance ratio, 196
polynomial time, 191
performance bound, 83
performance ratio, 83
pseudo-polynomial time, 192
PTAS, 196
random restart, 141
random search, 136, 146, 149, 184
simulated annealing, 136, 149
strongly polynomial, 91
tabu search, 139
threshold accepting, 136, 146
total enumeration, 149
aperiodic homogeneous Markov chain,
156, 184
approximation algorithm, 83, 196
performance bound, 196
performance ratio, 196
approximation class
APX, 196
FPTAS, 196
PTAS, 196
APX, 196
arc, 188
critical, 48
asexual reproduction, 143
aspiration criterion, 140, 146



226 Subject Index

asymptotic convergence, 146, 149, 180
augmenting path, 132

automorphism, 18

average case performance, 63

B

basic feasible solution, 178
basic variable, 179
beam, 124
best-improvement pivoting rule, 5, 120
bipartite graph, 183, 187
Block Shifting, 42, 51
Boolean circuit, 102, 204

size, 102
bubble sort, 64

C

child, 143
Christofides’ algorithm, 73
CIRCUIT/flip, 103, 121

PLS-complete, 104

tightly PLS-complete, 130, 204
clause, 109
clique, 202
closed under scaling, 84
closed walk, 188
co-NP, 80
combinatorial optimization problem, 3
complete bipartite graph, 183
complete graph, 184
completion time, 21
complexity class

APX, 196

co-NP, 80, 101, 197

FPTAS, 196

NP, 79, 192

NPC, 193

NPCO, 100

NPO, 79, 98, 194

P, 192

PLS, 98

PO, 100, 194

PTAS, 196
complexity theory, 191
component of graph, 189
computational complexity, 2, 97, 191

1|3 Ej+ 5, 50

P2 H EjoCj, 50

P H EjoCj, 50
0-1 INTEGER
PROGRAMMING/k-flip, 208
CIRCUIT/flip, 104, 130, 204
INDEPENDENT DOMINATING
SET/k-flip, 204
JOB SHOP SCHEDULING, 51
MAX-2sAT/flip, 199
MAX-2SAT/Kernighan-Lin, 199
MAX-4SAT WITH BOUNDED
VARIABLE
OCCURRENCE/flip, 200
MAX-CIRCUIT/flip, 104, 130, 204
MAX-CcUT/flip, 200
MAX-CUT/Kernighan-Lin, 200
MAX-SAT SUBOPTIMALITY, 94
MAXIMUM VARIABLE-WEIGHTED
SATISFIABILITY (MVS), 194
MAXIMUM WEIGHTED
INDEPENDENT SET/extended
swap, 202
MAXIMUM WEIGHTED INDUCED
SUBGRAPH WITH PROPERTY
[T/extended swap, 201
METRIC TSP SUBOPTIMALITY, 83
METRIC TSP/Lin-Kernighan', 202
METRIC TSP/k-change, 202
MIN-CIRCUIT/flip, 104, 130, 204
MINIMUM GRAPH COLORING, 35
POS NAE MAX-3SAT/flip, 205
POS NAE
MAX-3SAT/Kernighan-Lin,
110, 130, 205
PURE NASH EQUILIBRIA IN
CONGESTION GAMES, 206
RESTRICTED HAMILTONIAN
CYCLE (RHC), 81
SATISFIABILITY, 193
STABLE CONFIGURATION, 133,
207
STEINER TREE PROBLEM IN
GRAPHS, 34
TRAVELING SALESMAN
PROBLEM, 14
UGP/Fiduccia-Mattheyses, 207
UGP/FM-swap, 207
UGP/Kernighan-Lin, 117, 130, 207
UGP/swap, 109, 207



UNIFORM GRAPH PARTITIONING,
36
computational model, 191
congestion game, 206
network, 206
congestion of resource, 206
connected graph, 188
co-NP, 101, 197
constant matrix, 174
constructive algorithm, 2
control parameter, 137
convergence, 146, 149, 180
convex hull, 65
cost function, 3
cost-explicit encoding scheme, 84
Cramer’s rule, 179
critical arc, 48
critical machine, 23, 75
critical path, 48
critical-path swap neighborhood
function, 48, 58
critical-path swap neighborhood graph
weakly optimally connected, 58
cubic graph, 201
cycle, 188
Hamiltonian, 12, 188
cycling, 9, 139

D

decision problem, 192
degree, 53, 60
degree of node, 188
delay function, 206
depth of local optimum, 8, 182
determinant, 179
diameter, 8, 54, 60, 61, 176, 177, 180
diamond, 81
digraph, 188
directed graph, 188
discrete-time stochastic process, 150
disjunctive graph, 46
distance matrix

Euclidean, 13

symmetric, 13
diversification, 141
dominating neighborhood functions, 5
dominating set, 205
due date, 19

Subject Index 227

E

earliest due date order, 51
earliness, 21
easy problem, 192
EDD order, 51
edge, 187
eigenvalue, 154, 173, 178
eigenvector, 154, 173, 178
empirical analysis, 63
encoding scheme

cost explicit, 84
equilibrium, 158
equilibrium statistics, 168
equivalence relation, 39
ergodic coefficient, 174, 185

ergodicity
strong, 155
weak, 172

Euclidean distance matrix, 13

EUCLIDEAN STEINER TREE, 34

EUCLIDEAN TSP, 13, 37, 65, 124, 132

exact neighborhood function, 65

Eulerian graph, 73

Eulerian tour, 73

evolution, 143

exact neighborhood function, 5, 64, 80,
83, 132

expected cost, 168

exponential distribution, 137

exponential-time algorithm, 192

extended swap neighborhood function,
201

F
Fiduccia-Mattheyses neighborhood
function, 207
finite Markov chain, 150
first-improvement pivoting rule, 5, 120
flip neighborhood function, 33, 103, 109,
199, 200, 204, 205, 207
FLOW SHOP SCHEDULING, 20
FM-swap neighborhood function, 207
four color theorem, 25
FPTAS, 196
FPTAS, 196
fully polynomial-time approximation
scheme (FPTAS), 196



228 Subject Index

G
Gantt chart, 20
gate, 102
generation matrix, 152
generation probability, 152
genetic algorithm, 142
genetic local search, 142
offspring solution, 143
parent solution, 143
population, 143
selection, 143
variation
mutation, 143
recombination, 143
global optimum, 3
graph, 187
adjacent, 188
arc, 188
bipartite, 187
clique, 202
complete, 184
complete bipartite, 183
component, 189
connected, 188
cubic, 201
cycle, 188
degree of node, 188
digraph, 188
directed, 188
disjunctive, 46
dominating set, 205
edge, 187
Eulerian, 73
incident, 188
indegree of node, 188

independent set, 189, 202, 205

isotropic, 18
lollipop, 185

loop, 187
multigraph, 187
node, 187
outdegree of node, 188
path, 188

planar, 187

regular, 38

simple, 187

simple digraph, 188
spanning tree, 189

strongly connected digraph, 188
subgraph, 188
tree, 189
vertex, 187
walk, 188
closed, 188
weakly connected digraph, 188
weighted, 187
graph coloring, 25
graph theory, 187
Greedy Randomized Adaptive Search
Procedure (GRASP), 141

H
Hamiltonian cycle, 12, 81, 188
HAMILTONIAN CYCLE (HC), 81
Hamiltonian path, 81, 188, 203
HAMILTONIAN PATH COMPLEMENT,
197
Hamming distance, 61, 103
hard problem, 192
height of path, 8, 181
heuristic algorithm, 2
hill climbing, 4
hitting time, 184
homogeneous Markov chain, 150
aperiodic, 156, 184
irreducible, 156, 184
stationary distribution, 154
Hopfield network, 33, 133
hypercube, 61

I

identical parallel machines, 19
incident, 188
indegree of node, 188
INDEPENDENT DOMINATING SET/k-flip

tightly PLS-complete, 204
independent set, 189, 202, 205
INDEPENDENT SET, 90

MAXIMUM WEIGHTED

INDEPENDENT SET, 202

indirect solution representation, 23, 39
input size, 191
insertion neighborhood function, 22, 24
instance, 3, 84, 97
intensification, 141
interior city, 65



intersecting edges, 66
inversion-and-insertion neighborhood
function, 60
irreducible homogeneous Markov chain,
156, 184
isotropic graph, 18
iterated local search, 141, 147
iterated Lin-Kernighan algorithm,
146
iterative improvement, 4, 146
time complexity, 120

J
job
completion time, 21
due date, 19
earliness, 21
lateness, 21
precedence relation, 21
preemption, 21
release date, 21
setup time, 21
tardiness, 21
JOB SHOP SCHEDULING, 20, 22, 45, 52,
58
computational complexity, 51
neighborhood function
critical-path swap, 48, 58

K

Karp reducible, 194

Karp reduction, 194

Kempe chain, 26

Kempe chain neighborhood function, 27,
121

Kernighan-Lin neighborhood function,
29, 38, 108, 109, 146, 199,
200, 205, 207

KNAPSACK PROBLEM, 36

L
lateness, 21
Lin-Kernighan' neighborhood function,
202
linear combinatorial optimization
problem, 84
closed under scaling, 84
cost-explicit encoding scheme, 84
load of a machine, 75

Subject Index 229

local optimum, 5
depth, 8, 182
local search, 2, 3
local search problem, 97
0-1 INTEGER
PROGRAMMING/k-flip, 208
CcIrRcUIT/lip, 103, 121, 130, 204
INDEPENDENT DOMINATING
SET/k-flip, 204
MAX-2SsAT/flip, 134, 199
MAX-2SAT/Kernighan-Lin, 199
MAX-4SAT WITH BOUNDED
VARIABLE
OCCURRENCE/flip, 200
MAX-CIRCUIT/flip, 103, 110, 130,
204
MAX-CUT/flip, 134, 200
MAX-CUT/Kernighan-Lin, 200
MAXIMUM WEIGHTED
INDEPENDENT SET/extended
swap, 202
MAXIMUM WEIGHTED INDUCED
SUBGRAPH WITH PROPERTY
I1/extended swap, 201
METRIC TSP/Lin-Kernighan', 202
METRIC TSP/k-change, 202
MIN-CIRCUIT/flip, 103, 130, 204
POS NAE MAX-3sAT/flip, 134, 205
POS NAE
MAX-3SAT/Kernighan-Lin,
110, 130, 205
PURE NASH EQUILIBRIA IN
CONGESTION GAMES, 134,
206
STABLE CONFIGURATION, 133,
134, 207
UGP/Fiduccia-Mattheyses, 207
UGP/FM-swap, 207
UGP/Kernighan-Lin, 117, 130, 207
UGP/swap, 109, 134, 207
lollipop graph, 185
longest path, 47
longest path algorithm, 47
loop, 187

M
machine ordering, 46
machine scheduling, 19, 121



230 Subject Index

J || Cmax. 51
P || Cmax 75, 125, 132, 133
Q|| Cinax» 75, 133

R|| Cmax. 90, 92
1] sij | Conax» 22
1] Tnax. 51

1| Y;Ej+T;,41,51

1| Y ;w;Cj, 41, 64

1| ijjEjer;-Tj, 50

J || Cmax. 22, 45, 52, 58

P || Cmax. 22, 36, 38

Q | pmtn | Cmax, 51

R || Tiax. 51

R H EjoCj, 40, 49

neighborhood function
insertion, 22

move, 22, 36, 75, 90, 92, 125,

132,133
push, 90
swap, 22, 75, 90, 92
pivoting rule, 132, 133
machines
identical parallel, 19
uniform parallel, 19
unrelated parallel, 19
makespan, 22
Markov chain, 150
aperiodic, 156, 184
finite, 150
homogeneous, 150
irreducible, 156, 184
loss of memory, 171
state, 150
state space, 150
state transition graph, 150
stationary distribution, 154
strongly ergodic, 155
transition matrix, 150
transition probability, 150
weakly ergodic, 172
Markov theory, 150
matching, 183
MAX-2SAT, 91
neighborhood function
flip, 134, 199
Kernighan-Lin, 199
MAX-2sAT/flip, 134
tightly PLS-complete, 199

MAX-2SAT/Kernighan-Lin
tightly PLS-complete, 199
MAX-4SAT WITH BOUNDED VARIABLE
OCCURRENCE/flip
tightly PLS-complete, 200
MAX-CIRCUIT/flip, 103, 110
PLS-complete, 104
tightly PLS-complete, 130, 204
MAX-CUT, 90
neighborhood function
flip, 200
Kernighan-Lin, 200
MAX-CUT/flip, 134
tightly PLS-complete, 200
MAX-CUT/Kernighan-Lin
tightly PLS-complete, 200
MAX-FLOW PROBLEM
exact neighborhood function, 132
MAX-SAT SUBOPTIMALITY
computational complexity, 94
maximal matching, 183
MAXIMUM CLAUSE-WEIGHTED
SATISFIABILITY, 92
MAXIMUM SATISFIABILITY
(MAX-SAT), 94
MAXIMUM VARIABLE-WEIGHTED
SATISFIABILITY (MVS), 194
MAXIMUM WEIGHTED INDEPENDENT
SET/extended swap
PLS-complete, 202
MAXIMUM WEIGHTED INDUCED
SUBGRAPH WITH PROPERTY
[T/extended swap
PLS-complete, 201
memetic algorithm, 143
metaheuristic
genetic algorithm, 142
genetic local search, 142
GRASP, 141
hill climbing, 4
iterated local search, 141, 147
iterative improvement, 4, 146
time complexity, 120
memetic algorithm, 143
multistart, 141
random restart, 141
random search, 136, 146, 149, 184
simulated annealing, 136, 149



tabu search, 139
threshold accepting, 136, 146
total enumeration, 149
METRIC LABELING PROBLEM, 90
METRIC TSP, 13, 73, 122
exact neighborhood function, 80
METRIC TSP SUBOPTIMALITY, 81
computational complexity, 83
METRIC TSP/Lin-Kernighan’
tightly PLS-complete, 202
METRIC TSP/k-change
tightly PLS-complete, 202
Metropolis algorithm, 138
MIN-CIRCUIT/flip, 103
PLS-complete, 104
tightly PLS-complete, 130, 204
MINIMUM GRAPH COLORING (MGC),
25
computational complexity, 35
neighborhood function
Kempe chain, 27, 121
MINIMUM GRAPH COLORING ON
PLANAR GRAPHS, 34
MINIMUM SPANNING TREE, 24, 34, 38,
64,73, 134
exact neighborhood function, 64,
134
minimum spanning tree algorithm, 24, 38
Moore bound, 60
move neighborhood function, 22, 36,
125,132,133
performance ratio, 75, 90, 92
multigraph, 187
MULTIPROCESSOR SCHEDULING, 22,
36, 38,75
neighborhood function
move, 36, 125, 132, 133
pivoting rule, 125, 132, 133
multistart, 141
MULTIWAY MINIMUM CUT, 90
mutation, 143

N
nearest-neighbor algorithm, 142
negative literal, 109
neighbor, 4
neighborhood function, 4, 53
Lin-Kernighan’, 202

Subject Index 231

k-change, 15, 53, 60, 65, 93, 120,
122, 124, 202
performance bound, 72, 80, 89,
92
performance ratio, 72, 80, 89, 92
k-flip, 204, 208
critical-path swap, 48, 58
exact, 5, 64, 80, 83, 132
extended swap, 201
Fiduccia-Mattheyses, 207
flip, 33, 103, 109, 199, 200, 204,
205, 207
FM-swap, 207
insertion, 22, 24
inversion and insertion, 60
Kempe chain, 27, 121
Kernighan-Lin, 29, 38, 108, 109,
146, 199, 200, 205, 207
move, 22, 36, 125, 132, 133
performance ratio, 75, 90, 92
node insertion, 18, 36, 53, 93
Or, 19, 60
performance bound, 63
performance guarantee, 63
performance ratio, 63
polynomially searchable, 79, 83
swap, 22, 64, 91, 207
performance ratio, 75, 90, 92
switch, 206
symmetric, 4, 149
neighborhood graph, 4, 53
k-change
degree, 54
diameter, 54, 60, 61
critical-path swap, 48
weakly optimally connected, 58
node insertion
degree, 53
diameter, 54, 60
strongly connected, 4, 149
symmetric, 149
weakly optimally connected, 4, 58,
181
weakly reversible, 181
neighborhood of a solution, 4
neighborhood size, 4
network congestion game, 206
neural computing, 33



232 Subject Index

node, 187
potential, 7
node-insertion neighborhood function,
18, 36, 53, 93
node-insertion neighborhood graph
degree, 53
diameter, 54, 60
non-approximability results, 79
non-deterministic computer, 192
non-separable partitions, 69
norm of vector, 173
NP, 79, 192
NP-complete, 192
in the ordinary sense, 193
in the strong sense, 193
NP-hard, 193
NPC, 193
NPCO, 100
NPO, 79, 98, 194
NPO-complete, 194

(0]

OPEN SHOP SCHEDULING, 20
operation

completion time, 21
optimization problem, 3, 192
Or neighborhood function, 19, 60
oracle, 80, 101, 194
outdegree of node, 188
overlapping edges, 65

P
P, 192
parents, 143
path, 188
augmenting, 132
critical, 48
Hamiltonian, 188, 203
height, 8, 181
longest, 47
payoff function, 206
perfect matching, 73
performance bound, 196
neighborhood function, 63
k-change, 72, 80, 89, 92
polynomial-time algorithm, 83
performance guarantee, 63
performance ratio, 196

neighborhood function, 63
k-change, 72, 80, 89, 92
move, 75, 90, 92
swap, 75, 90, 92
polynomial-time algorithm, 83
permutation, 11
pivoting rule, 5, 120, 127, 132, 133
best improvement, 5
first improvement, 5
planar graph, 187
plateau, 8
PLS (Polynomial-time Local Search), 98
PLS-complete problem, 99, 127
0-1 INTEGER
PROGRAMMING/k-flip, 208
CIRCUIT/flip, 104, 204
INDEPENDENT DOMINATING
SET/k-flip, 204
MAX-2sAT/flip, 199
MAX-2SAT/Kernighan-Lin, 199
MAX-4SAT WITH BOUNDED
VARIABLE
OCCURRENCE/flip, 200
MAX-CIRCUIT/flip, 104, 204
MAX-CcUT/flip, 200
MAX-CUT/Kernighan-Lin, 200
MAXIMUM WEIGHTED
INDEPENDENT SET/extended
swap, 202
MAXIMUM WEIGHTED INDUCED
SUBGRAPH WITH PROPERTY
[T/extended swap, 201
METRIC TSP/Lin-Kernighan', 202
METRIC TSP/k-change, 202
MIN-CIRCUIT/flip, 104, 204
POS NAE MAX-3SAT/flip, 205
POS NAE
MAX-3SAT/Kernighan-Lin,
110, 205
PURE NASH EQUILIBRIA IN
CONGESTION GAMES, 206
STABLE CONFIGURATION, 207
tightly, 129
UGP/Fiduccia-Mattheyses, 207
UGP/FM-swap, 207
UGP/Kernighan-Lin, 117, 207
UGP/swap, 109, 207
PLS-reducible, 99



tightly, 129
PLS-reduction, 99, 127
tight, 129
PO, 100, 194
polynomial transformation, 194
polynomial-time algorithm, 191
performance bound, 83
performance ratio, 83
polynomial-time approximation scheme
(PTAS), 196
fully, 196
polynomial-time reduction, 192
polynomially reducible, 192
polynomially searchable neighborhood
function, 79, 83
polytope, 178
population, 143
POS NAE MAX-3sAT/flip, 134
tightly PLS-complete, 205
POS NAE MAX-3SAT/Kernighan-Lin
PLS-complete, 110
tightly PLS-complete, 130, 205
positive literal, 109
POSITIVE NOT-ALL-EQUAL MAX-3SAT
(POS NAE MAX-3SAT), 109
neighborhood function
flip, 109, 205
Kernighan-Lin, 109, 130, 205
potential, 7, 127
precedence relation, 21
preemption, 21
probabilistic analysis, 63
pseudo-polynomial time algorithm, 192
PSPACE-complete, 133
PTAS, 196
PTAS, 196
PURE NASH EQUILIBRIA IN
CONGESTION GAMES, 134
tightly PLS-complete, 206

Q

QUADRATIC ASSIGNMENT PROBLEM,
90

R
random restart, 141
random search, 136, 146, 149, 184
reachable solution, 4

Subject Index 233

recombination, 143

reduction
Karp, 194
polynomial time, 192
Turing, 194

regular graph, 38

release date, 21

reproduction
asexual, 143
sexual, 143

RESTRICTED HAMILTONIAN CYCLE

(RHC), 81

computational complexity, 81

S
SATISFIABILITY, 94, 193
ksAT, 90
MAX-2SAT, 91, 134, 199
MAX-4SAT WITH BOUNDED
VARIABLE OCCURRENCE,
200
MAX-SAT, 94
MAX-SAT SUBOPTIMALITY, 94
MAXIMUM CLAUSE-WEIGHTED
SATISFIABILITY, 92
MAXIMUM VARIABLE-WEIGHTED
SATISFIABILITY, 194
POS NAE MAX-3SAT, 109, 205
selection, 143
setup time, 21
sexual reproduction, 143
shortest weighted processing time order,
41, 64
simple digraph, 188
simple graph, 187
simulated annealing, 136, 149
acceptance matrix, 152
acceptance probability, 137, 152
control parameter, 137
convergence, 149
cooling schedule, 137
equilibrium statistics, 168
generation matrix, 152
generation probability, 152
initial solution, 138
stop criterion, 137
temperature, 137
transition, 151



234 Subject Index

transition matrix, 152
transition probability, 152
size of Boolean circuit, 102
solution
offspring, 143
parent, 143
solution space, 3
solve a problem, 192
SORTING, 64, 91
spanning tree, 189
stable configuration, 33
STABLE CONFIGURATION, 134
tightly PLS-complete, 133, 207
stable node, 33
standard local optimum problem, 133
state, 150
state space, 150
state transition graph, 150
stationary distribution, 154
STEINER TREE PROBLEM IN GRAPHS
(STG), 23, 39, 121
computational complexity, 34
neighborhood function
insertion, 24
stochastic matrix, 152
stochastic vector, 152
strongly connected digraph, 188
strongly connected neighborhood graph,
4,149
strongly ergodic, 155
strongly NP-complete, 193
strongly polynomial algorithm, 91
subgraph, 188
swap neighborhood function, 22, 64, 91,
207
critical-path swap, 48
extended, 201
performance ratio, 75, 90, 92
switch neighborhood function, 206
SWPT order, 41, 64
symmetric distance matrix, 13
symmetric neighborhood function, 4, 149
symmetric neighborhood graph, 149
SYMMETRIC TSP, 13, 60, 72, 93, 94, 122
recombination operator, 144

T
tabu list, 139

tabu search, 139
aspiration criterion, 140, 146
convergence, 146, 180
diversification, 141
intensification, 141
stop criterion, 141
tabu list, 139
tardiness, 21
temperature, 137
threshold, 136
threshold accepting, 136, 146
tight PLS-reduction, 129
tightly PLS-complete problem, 129
0-1 INTEGER
PROGRAMMING/k-flip, 208
CIRCUIT/flip, 130, 204
INDEPENDENT DOMINATING
SET/k-flip, 204
MAX-2sAT/flip, 199
MAX-2SAT/Kernighan-Lin, 199
MAX-4SAT WITH BOUNDED
VARIABLE
OCCURRENCE/flip, 200
MAX-CIRCUIT/flip, 130, 204
MAX-CcUT/flip, 200
MAX-CUT/Kernighan-Lin, 200
METRIC TSP/Lin-Kernighan', 202
METRIC TSP/k-change, 202
MIN-CIRCUIT/flip, 130, 204
POS NAE MAX-3SAT/flip, 205
POS NAE
MAX-3SAT/Kernighan-Lin,
130, 205
PURE NASH EQUILIBRIA IN
CONGESTION GAMES, 206
STABLE CONFIGURATION, 133,
207
UGP/Fiduccia-Mattheyses, 207
UGP/FM-swap, 207
UGP/Kernighan-Lin, 130, 207
UGP/swap, 207
tightly PLS-reducible, 129
time complexity, 97, 191
time complexity function, 191
total enumeration algorithm, 149
touching edges, 66
transition, 151
transition graph, 5, 120, 127



potential, 7
transition graph complexity problem, 127
transition matrix, 150, 152
state transition graph, 150
transition probability, 150, 152
TRAVELING SALESMAN PROBLEM
(Tsp), 1, 11, 53, 121
(1,2)-Tsp, 92
algorithm
k-Opt, 15
Christofides’ algorithm, 73
iterated Lin-Kernighan
algorithm, 146
iterated local search, 147
nearest-neighbor, 142
computational complexity, 14
EUCLIDEAN TSP, 13, 37, 65, 124,
132
exact neighborhood function, 65
METRIC TSP, 13, 73
exact neighborhood function, 80
METRIC TSP SUBOPTIMALITY, §1
neighborhood function
Lin-Kernighan', 202
k-change, 15, 53, 65, 72, 80, 89,
92,93, 120, 122, 124, 202
inversion and insertion, 60
node insertion, 18, 36, 53, 93
Or, 19, 60
neighborhood graph
k-change, 54, 60, 61
node insertion, 53, 60
recombination operator, 144
SYMMETRIC TSP, 13, 60, 72, 93,
94,122, 144
tree, 189
spanning, 189
triangle inequality, 13, 204
truth assignment, 109
Turing machine, 191
Turing reducible, 194
Turing reduction, 194

U
UGP/Fiduccia-Mattheyses
tightly PLS-complete, 207
UGP/FM-swap
tightly PLS-complete, 207

Subject Index 235

UGP/Kernighan-Lin
PLS-complete, 117
tightly PLS-complete, 130, 207
UGP/swap, 134
PLS-complete, 109
tightly PLS-complete, 207
unary notation, 192
UNIFORM GRAPH PARTITIONING
(ugp), 28, 121
computational complexity, 36
neighborhood function
Fiduccia-Mattheyses, 207
FM-swap, 207
Kernighan-Lin, 29, 38, 108, 117,
130, 146, 207
swap, 109, 207
uniform parallel machines, 19
unrelated parallel machines, 19

\%

variable-depth search, 28, 109, 141, 146
variance, 168
variation, 143

mutation, 143

recombination, 143
vertex, 187
VERTEX COVER, 91

w
walk, 188
closed, 188

weakly connected digraph, 188

weakly ergodic, 172

weakly optimally connected
neighborhood graph, 4, 58,
181

weakly reversible neighborhood graph,
181

weighted graph, 187

worst-case analysis, 63

worst-case performance, 63



Monographs in Theoretical Computer Science - An EATCS Series

K. Jensen

Coloured Petri Nets

Basic Concepts, Analysis Methods
and Practical Use, Vol. 1

2nd ed.

K. Jensen

Coloured Petri Nets

Basic Concepts, Analysis Methods
and Practical Use, Vol. 2

K. Jensen

Coloured Petri Nets

Basic Concepts, Analysis Methods
and Practical Use, Vol. 3

A. Nait Abdallah
The Logic of Partial Information

Z. Fiilop, H.Vogler
Syntax-Directed Semantics
Formal Models Based

on Tree Transducers

A. de Luca, S. Varricchio
Finiteness and Regularity
in Semigroups and Formal Languages

E. Best, R. Devillers, M. Koutny
Petri Net Algebra

S.P. Demri, E.S. Orlowska
Incomplete Information:
Structure, Inference, Complexity

J.C.M. Baeten, C.A. Middelburg
Process Algebra with Timing

L.A. Hemaspaandra, L. Torenvliet
Theory of Semi-Feasible Algorithms

E. Fink, D. Wood
Restricted-Orientation Convexity

Zhou Chaochen, M.R. Hansen
Duration Calculus

A Formal Approach to Real-Time
Systems

M. Grofle-Rhode

Semantic Integration

of Heterogeneous Software
Specifications

H.Ehrig, K. Ehrig, U. Prange, G. Taentzer
Fundamentals of Algebraic
Graph Transformation

W. Michiels, E. Aarts, J. Korst
Theoretical Aspects of Local Search



Texts in Theoretical Computer Science - An EATCS Series

W. Fokkink
Introduction to Process Algebra

K. Weihrauch
Computable Analysis
An Introduction

J. Hromkovié

Algorithmics for Hard Problems
Introduction to Combinatorial
Optimization, Randomization,
Approximation, and Heuristics
2nd ed.

S. Jukna

Extremal Combinatorics
With Applications

in Computer Science

P. Clote, E. Kranakis
Boolean Functions
and Computation Models

L.A. Hemaspaandra, M. Ogihara
The Complexity Theory Companion

C.S. Calude
Information and Randomness

An Algorithmic Perspective
2nd ed.

J. Hromkovié

Theoretical Computer Science
Introduction to Automata,
Computability, Complexity,
Algorithmics, Randomization,
Communication and Cryptography

K. Schneider
Verification of Reactive Systems
Formal Methods and Algorithms

S. Ronchi Della Rocca, L. Paolini
The Parametric Lambda Calculus
A Metamodel for Computation

Y. Bertot, P. Castéran
Interactive Theorem Proving
and Program Development
Coq Art: The Calculus

of Inductive Constructions

L. Libkin
Elements of Finite Model Theory

M. Hutter

Universal Artificial Intelligence
Sequential Decisions

Based on Algorithmic Probability

G. Pdun, G. Rozenberg, A. Salomaa
DNA Computing

New Computing Paradigms

2nd corr. printing

W. Kluge
Abstract Computing Machines
A Lambda Calculus Perspective

J. Hromkovic

Design and Analysis of Randomized
Algorithms

Introduction to Design Paradigms

J. Hromkovic

Dissemination of Information
in Communication Networks
Broadcasting, Gossiping, Leader
Election, and Fault Tolerance

R. Kurki-Suonio

A Practical Theory of Reactive
Systems

Incremental Modeling of Dynamic
Behaviors

F. Drewes
Grammatical Picture Generation
A Tree-Based Approach

J. Flum, M. Grohe
Parameterized Complexity Theory

D. Bjgrner
Software Engineering 1
Abstraction and Modelling

D. Bjorner

Software Engineering 2
Specification of Systems and
Languages

D. Bjgrner

Software Engineering 3
Domains, Requirements, and
Software Design




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




